• 제목/요약/키워드: Intelligent Autonomous robots

검색결과 108건 처리시간 0.021초

하이브리드 시스템을 이용한 이동로봇의 지능적 동작과 자율주행 (Intelligent Motion and Autonomous Maneuvering of Mobile Robots using Hybrid System)

  • 이용미;임준홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.152-152
    • /
    • 2000
  • In this paper, we propose a new approach to intelligent motion and autonomous maneuvering of mobile robots using hybrid system. In high Level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot as a low vevel are specified in the abstracted motions, The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments.

  • PDF

Generation of Fuzzy Rules for Cooperative Behavior of Autonomous Mobile Robots

  • Kim, Jang-Hyun;Kong, Seong-Gon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.164-169
    • /
    • 1998
  • Complex "lifelike" behaviors are composed of local interactions of individuals under fundamental rules of artificial life. In this paper, fundamental rules for cooperative group behaviors, "flocking" and "arrangement", of multiple autonomous mobile robots are represented by a small number of fuzzy rules. Fuzzy rules in Sugeno type and their related paramenters are automatically generated from clustering input-output data obtained from the algorithms the group behaviors. Simulations demonstrate the fuzzy rules successfully realize group intelligence of mobile robots.

  • PDF

온톨로지에 기반한 자율주행 로봇의 제어 (Ontology-based Control of Autonomous Robots)

  • 이인근;권순학
    • 한국지능시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.69-74
    • /
    • 2009
  • 본 논문에서는 온톨로지에 기반한 자율주행 로봇의 제어 방법을 제안한다. 제안한 방법은 온톨로지를 단순히 정보의 체계적인 저장소로 이용하는 것에서 벗어나 온톨로지 추론을 통해 로봇을 제어한다. 즉, 로봇이 감지한 장애물 정보를 온톨로지로 표현하고, 온톨로지 추론을 통해 주변 상황에 따른 로봇의 행동계획과 로봇의 제어를 수행한다. 그리고 차등구동형로봇을 제작하고, 실제 환경에서의 로봇 주행 실험을 통해 제안한 방법의 효용성을 보인다.

클러스터링에 의한 자율이동 로봇의 정렬 알고리즘 구현 (Arrangement of Autonomous Mobile Robots by the Clustering Algorithm)

  • 김장현;공성곤
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.79-82
    • /
    • 1997
  • In this paper, group intelligence "arrangement" bahavior of autonomous mobile robots(AMRs) is realized by the fuzzy rules. The fuzzy rules for the arrangement are generated from clustering the input-output data. Simulation shows that a small-number of fuzzy rules successfully realizes the arrangement behavior of AMRs.

  • PDF

Behavior Learning of Swarm Robot System using Bluetooth Network

  • Seo, Sang-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권1호
    • /
    • pp.10-15
    • /
    • 2009
  • With the development of techniques, robots are getting smaller, and the number of robots needed for application is greater and greater. How to coordinate large number of autonomous robots through local interactions has becoming an important research issue in robot community. Swarm Robot Systems (SRS) is a system that independent autonomous robots in the restricted environments infer their status from pre-assigned conditions and operate their jobs through the cooperation with each other. In the SRS, a robot contains sensor part to percept the situation around them, communication part to exchange information, and actuator part to do a work. Especially, in order to cooperate with other robots, communicating with other robots is one of the essential elements. Because Bluetooth has many advantages such as low power consumption, small size module package, and various standard protocols, it is rated as one of the efficient communicating technologies which can apply to small-sized robot system. In this paper, we will develop Bluetooth communicating system for autonomous robots. And we will discuss how to construct and what kind of procedure to develop the communicating system for group behavior of the SRS under intelligent space.

Cooperative Behavior of Distributed Autonomous Robotic Systems Based on Schema Co-Evolutionary Algorithm

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권3호
    • /
    • pp.185-190
    • /
    • 2002
  • In distributed autonomous robotic systems (DARS), each robot must behave by itself according to its states ad environments, and if necessary, must cooperate with other robots in order to carry out their given tasks. Its most significant merit is that they determine their behavior independently, and cooperate with other robots in order to perform the given tasks. Especially, in DARS, it is essential for each robot to have evolution ability in order to increase the performance of system. In this paper, a schema co-evolutionary algorithm is proposed for the evolution of collective autonomous mobile robots. Each robot exchanges the information, chromosome used in this algorithm, through communication with other robots. Each robot diffuses its chromosome to two or more robots, receives other robot's chromosome and creates new species. Therefore if one robot receives another robot's chromosome, the robot creates new chromosome. We verify the effectiveness of the proposed algorithm by applying it to cooperative search problem.

Autonomous Maze Solving Robot

  • Ye, Gan Zhen;Kang, Dae-Ki
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.165-167
    • /
    • 2011
  • Autonomous robots are intelligent machines that are capable of performing task in the world themselves with little or no human intervention. One of the main reason autonomous robots gained popularity in human's world is their ability to perform task with high degree of precision, accuracy and also consistency. One of the most studied fields in autonomous robot is the ability of decision making in robots. To tackle the ability of robots to make decision, this paper proposed an Autonomous Maze Solving Robot that is able to solve a maze using the optimum solution. The maze and the design of the robot are in compliance with IEEE Micromouse competition rules and regulation. Micromouse is an autonomous maze solving robot that shall be able to explore a maze on its own from a predefined starting location and find the optimum path to reach the predefined goal in the maze without human's intervention.

  • PDF

Research on Intelligent Combat Robot System as a Game-Changer in Future Warfare

  • Byung-Hyo Park;Sang-Hyuk Park
    • International Journal of Advanced Culture Technology
    • /
    • 제11권4호
    • /
    • pp.328-332
    • /
    • 2023
  • The Army has presented eight game-changers for future warfare through 'Army Vision 2050,' including Intelligent Combat Robots, Super Soldiers, Energy Weapons, Hypersonic Weapons, Non-lethal Weapons, Autonomous Mobile Equipment, Intelligent Command and Control Systems, and Energy Supply Systems. This study focuses on Intelligent Combat Robots, considering them as the most crucial element among the mentioned innovations. How will Intelligent Combat Robots be utilized on the future battlefield? The future battlefield is expected to take the form of combined human-robot warfare, where advancements in science and technology allow intelligent robots to replace certain human roles. Especially, tasks known as Dirty, Difficult, Dangerous, and Dull (4D) in warfare are expected to be assigned to robots. This study suggests three forms of Intelligent Robots: humanoid robots, biomimetic robots, and swarm drones.

Online Evolution for Cooperative Behavior in Group Robot Systems

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.282-287
    • /
    • 2008
  • In distributed mobile robot systems, autonomous robots accomplish complicated tasks through intelligent cooperation with each other. This paper presents behavior learning and online distributed evolution for cooperative behavior of a group of autonomous robots. Learning and evolution capabilities are essential for a group of autonomous robots to adapt to unstructured environments. Behavior learning finds an optimal state-action mapping of a robot for a given operating condition. In behavior learning, a Q-learning algorithm is modified to handle delayed rewards in the distributed robot systems. A group of robots implements cooperative behaviors through communication with other robots. Individual robots improve the state-action mapping through online evolution with the crossover operator based on the Q-values and their update frequencies. A cooperative material search problem demonstrated the effectiveness of the proposed behavior learning and online distributed evolution method for implementing cooperative behavior of a group of autonomous mobile robots.

A Framework for Cognitive Agents

  • Petitt, Joshua D.;Braunl, Thomas
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권2호
    • /
    • pp.229-235
    • /
    • 2003
  • We designed a family of completely autonomous mobile robots with local intelligence. Each robot has a number of on-board sensors, including vision, and does not rely on global positioning systems The on-board embedded controller is sufficient to analyze several low-resolution color images per second. This enables our robots to perform several complex tasks such as navigation, map generation, or providing intelligent group behavior. Not being limited to playing the game of soccer and being completely autonomous, we are also looking at a number of other interesting scenarios. The robots can communicate with each other, e.g. for exchanging positions, information about objects or just the local states they are currently in (e.g. sharing their current objectives with other robots in the group). We are particularly interested in the differences between a behavior-based approach versus a traditional control algorithm at this still very low level of action.