• Title/Summary/Keyword: Intelligence Optimization

Search Result 384, Processing Time 0.029 seconds

KSB Artificial Intelligence Platform Technology for On-site Application of Artificial Intelligence (인공지능의 현장적용을 위한 KSB 인공지능 플랫폼 기술)

  • Lee, Y.H.;Kang, H.J.;Kim, Y.M.;Kim, T.H.;Ahn, H.Y.;You, T.W.;Lee, H.S.;Lim, W.S.;Kim, H.J.;Pyo, C.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.28-37
    • /
    • 2020
  • Recently, the focus of research interest in artificial intelligence technology has shifted from algorithm development to application domains. Industrial sectors such as smart manufacturing, transportation, and logistics venture beyond automation to pursue digitalization of sites for intelligence. For example, smart manufacturing is realized by connecting manufacturing sites, autonomous reconfiguration, and optimization of manufacturing systems according to customer requirements to respond promptly to market needs. Currently, KSB Convergence Research Department is developing BeeAI-an on-site end-to-end intelligence platform. BeeAI offers end-to-end service pipeline configuration and DevOps technologies that can produce and provide intelligence services needed on-site. We are hopeful that in future, the BeeAI technology will become the base technology at various sites that require automation and intelligence.

Optimal LEACH Protocol with Improved Bat Algorithm in Wireless Sensor Networks

  • Cai, Xingjuan;Sun, Youqiang;Cui, Zhihua;Zhang, Wensheng;Chen, Jinjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2469-2490
    • /
    • 2019
  • A low-energy adaptive clustering hierarchy (LEACH) protocol is a low-power adaptive cluster routing protocol which was proposed by MIT's Chandrakasan for sensor networks. In the LEACH protocol, the selection mode of cluster-head nodes is a random selection of cycles, which may result in uneven distribution of nodal energy and reduce the lifetime of the entire network. Hence, we propose a new selection method to enhance the lifetime of network, in this selection function, the energy consumed between nodes in the clusters and the power consumed by the transfer between the cluster head and the base station are considered at the same time. Meanwhile, the improved FTBA algorithm integrating the curve strategy is proposed to enhance local and global search capabilities. Then we combine the improved BA with LEACH, and use the intelligent algorithm to select the cluster head. Experiment results show that the improved BA has stronger optimization ability than other optimization algorithms, which the method we proposed (FTBA-TC-LEACH) is superior than the LEACH and LEACH with standard BA (SBA-LEACH). The FTBA-TC-LEACH can obviously reduce network energy consumption and enhance the lifetime of wireless sensor networks (WSNs).

Comparative Study of Artificial-Intelligence-based Methods to Track the Global Maximum Power Point of a Photovoltaic Generation System (태양광 발전 시스템의 전역 최대 발전전력 추종을 위한 인공지능 기반 기법 비교 연구)

  • Lee, Chaeeun;Jang, Yohan;Choung, Seunghoon;Bae, Sungwoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.297-304
    • /
    • 2022
  • This study compares the performance of artificial intelligence (AI)-based maximum power point tracking (MPPT) methods under partial shading conditions in a photovoltaic generation system. Although many studies on AI-based MPPT have been conducted, few studies comparing the tracking performance of various AI-based global MPPT methods seem to exist in the literature. Therefore, this study compares four representative AI-based global MPPT methods including fuzzy logic control (FLC), particle swarm optimization (PSO), grey wolf optimization (GWO), and genetic algorithm (GA). Each method is theoretically analyzed in detail and compared through simulation studies with MATLAB/Simulink under the same conditions. Based on the results of performance comparison, PSO, GWO, and GA successfully tracked the global maximum power point. In particular, the tracking speed of GA was the fastest among the investigated methods under the given conditions.

A Study on Optimization Model for IoT and IoB based Optimal Medical Care (IoT(Internet of Things)와 IoB(Internet of Body) 기반 적정 의료를 위한 의료 최적화 모델 연구)

  • Park, Sunho;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.551-554
    • /
    • 2017
  • The largest industry in the world is the medical industry, and due to aging and growing demand for well-being, it is necessary to review the competition strategy of the healthcare industry. We will secure competitiveness among medical institutions through the rapid dissemination of ICT convergence, study the intelligence level of digital health care by increasing the capacity of intelligent medical care by combining big data of medical data and artificial intelligence, And to find a countermeasure for constructing a medical optimization model.

  • PDF

Ensemble techniques and hybrid intelligence algorithms for shear strength prediction of squat reinforced concrete walls

  • Mohammad Sadegh Barkhordari;Leonardo M. Massone
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.37-59
    • /
    • 2023
  • Squat reinforced concrete (SRC) shear walls are a critical part of the structure for both office/residential buildings and nuclear structures due to their significant role in withstanding seismic loads. Despite this, empirical formulae in current design standards and published studies demonstrate a considerable disparity in predicting SRC wall shear strength. The goal of this research is to develop and evaluate hybrid and ensemble artificial neural network (ANN) models. State-of-the-art population-based algorithms are used in this research for hybrid intelligence algorithms. Six models are developed, including Honey Badger Algorithm (HBA) with ANN (HBA-ANN), Hunger Games Search with ANN (HGS-ANN), fitness-distance balance coyote optimization algorithm (FDB-COA) with ANN (FDB-COA-ANN), Averaging Ensemble (AE) neural network, Snapshot Ensemble (SE) neural network, and Stacked Generalization (SG) ensemble neural network. A total of 434 test results of SRC walls is utilized to train and assess the models. The results reveal that the SG model not only minimizes prediction variance but also produces predictions (with R2= 0.99) that are superior to other models.

OPTIMISATION OF ASSET MANAGEMENT METHODOLOGY FOR A SMALL BRIDGE NETWORK

  • Jaeho Lee;Kamalarasa Sanmugarasa
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.597-602
    • /
    • 2011
  • A robust asset management methodology is essential for effective decision-making of maintenance, repair and rehabilitation of a bridge network. It can be achieved by a computer-based bridge management system (BMS). Successful BMS development requires a reliable bridge deterioration model, which is the most crucial component in a BMS, and an optimal management philosophy. The maintenance optimization methodology proposed in this paper is developed for a small bridge network with limited structural condition rating records. . The methodology is organized in three major components: (1) bridge health index (BHI); (2) maintenance and budget optimization; and (3) reliable Artificial Intelligence (AI) based bridge deterioration model. The outcomes of the paper will help to identify BMS implementation problems and to provide appropriate solutions for managing small bridge networks.

  • PDF

A Study on the Performance Improvement of MLP Model for Kodály Hand Sign Scale Recognition

  • Na Gyeom YANG;Dong Kun CHUNG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.3
    • /
    • pp.33-39
    • /
    • 2024
  • In this paper, we explore the application of Kodaly hand signs in enhancing children's music education, performances, and auditory assistance technologies. This research focuses on improving the recognition rate of Multilayer Perceptron (MLP) models in identifying Kodaly hand sign scales through the integration of Artificial Neural Networks (ANN). We developed an enhanced MLP model by augmenting it with additional parameters and optimizing the number of hidden layers, aiming to substantially increase the model's accuracy and efficiency. The augmented model demonstrated a significant improvement in recognizing complex hand sign sequences, achieving a higher accuracy compared to previous methods. These advancements suggest that our approach can greatly benefit music education and the development of auditory assistance technologies by providing more reliable and precise recognition of Kodaly hand signs. This study confirms the potential of parameter augmentation and hidden layers optimization in refining the capabilities of neural network models for practical applications.

Structural damage identification using cloud model based fruit fly optimization algorithm

  • Zheng, Tongyi;Liu, Jike;Luo, Weili;Lu, Zhongrong
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.245-254
    • /
    • 2018
  • In this paper, a Cloud Model based Fruit Fly Optimization Algorithm (CMFOA) is presented for structural damage identification, which is a global optimization algorithm inspired by the foraging behavior of fruit fly swarm. It is assumed that damage only leads to the decrease in elementary stiffness. The differences on time-domain structural acceleration data are used to construct the objective function, which transforms the damaged identification problem of a structure into an optimization problem. The effectiveness, efficiency and accuracy of the CMFOA are demonstrated by two different numerical simulation structures, including a simply supported beam and a cantilevered plate. Numerical results show that the CMFOA has a better capacity for structural damage identification than the basic Fruit Fly Optimization Algorithm (FOA) and the CMFOA is not sensitive to measurement noise.

Dolphin Echolocation Optimization: Continuous search space

  • Kaveh, A.;Farhoudi, N.
    • Advances in Computational Design
    • /
    • v.1 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Nature has provided inspiration for most of the man-made technologies. Scientists believe that dolphins are the second to humans in smartness and intelligence. Echolocation is the biological sonar used by dolphins for navigation and hunting in various environments. This ability of dolphins is mimicked in this paper to develop a new optimization method. Dolphin Echolocation Optimization (DEO) is an optimization method based on dolphin's approach for hunting food and exploration of environment. DEO has already been developed for discrete optimization search space and here it is extended to continuous search space. DEO has simple rules and is adjustable for predetermined computational cost. DEO provides the optimum results and leads to alternative optimality curves suitable for the problem. This algorithm has a few parameters and it is applicable to a wide range of problems like other metaheuristic algorithms. In the present work, the efficiency of this approach is demonstrated using standard benchmark problems.

An Design Exploration Technique of a Hybrid Memory for Artificial Intelligence Applications (인공지능 응용을 위한 하이브리드 메모리 설계 탐색 기법)

  • Cho, Doo-San
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.531-536
    • /
    • 2021
  • As artificial intelligence technology advances, it is being applied to various application fields. Artificial intelligence is performing well in the field of image recognition and classification. Chip design specialized in this field is also actively being studied. Artificial intelligence-specific chips are designed to provide optimal performance for the applications. At the design task, memory component optimization is becoming an important issue. In this study, the optimal algorithm for the memory size exploration is presented, and the optimal memory size is becoming as a important factor in providing a proper design that meets the requirements of performance, cost, and power consumption.