• Title/Summary/Keyword: Intelligence Optimization

Search Result 384, Processing Time 0.03 seconds

Development of AI-based Cognitive Production Technology for Digital Datadriven Agriculture, Livestock Farming, and Fisheries (디지털 데이터 중심의 AI기반 환경인지 생산기술 개발 방향)

  • Kim, S.H.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.1
    • /
    • pp.54-63
    • /
    • 2021
  • Since the recent COVID-19 pandemic, countries have been strengthening trade protection for their security, and the importance of securing strategic materials, such as food, is drawing attention. In addition to the cultural aspects, the global preference for food produced in Korea is increasing because of the Korean Wave. Thus, the Korean food industry can be developed into a high-value-added export food industry. Currently, Korea has a low self-sufficiency rate for foodstuffs apart from rice. Korea also suffers from problems arising from population decline, aging, rapid climate change, and various animal and plant diseases. It is necessary to develop technologies that can overcome the production structures highly dependent on the outside world of food and foster them into export-type system industries. The global agricultural industry-related technologies are actively being modified via data accumulation, e.g., environmental data, production information, and distribution and consumption information in climate and production facilities, and by actively expanding the introduction of the latest information and communication technologies such as big data and artificial intelligence. However, long-term research and investment should precede the field of living organisms. Compared to other industries, it is necessary to overcome poor production and labor environment investment efficiency in the food industry with respect to the production cost, equipment postmanagement, development tailored to the eye level of field workers, and service models suitable for production facilities of various sizes. This paper discusses the flow of domestic and international technologies that form the core issues of the site centered on the 4th Industrial Revolution in the field of agriculture, livestock, and fisheries. It also explains the environmental awareness production technologies centered on sustainable intelligence platforms that link climate change responses, optimization of energy costs, and mass production for unmanned production, distribution, and consumption using the unstructured data obtained based on detection and growth measurement data.

Optimization of Scan Parameters for in vivo Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopic Imaging

  • Nguyen, Nguyen Trong;Rasanjala, Onila N.M.D.;Park, Ilwoo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.125-134
    • /
    • 2022
  • Purpose: The aim of this study was to investigate the change in signal sensitivity over different acquisition start times and optimize the scanning window to provide the maximal signal sensitivity of [1-13C]pyruvate and its metabolic products, lactate and alanine, using spatially localized hyperpolarized 3D 13C magnetic resonance spectroscopic imaging (MRSI). Materials and Methods: We acquired 3D 13C MRSI data from the brain (n = 3), kidney (n = 3), and liver (n = 3) of rats using a 3T clinical scanner and a custom RF coil after the injection of hyperpolarized [1-13C]pyruvate. For each organ, we obtained three consecutive 3D 13C MRSI datasets with different acquisition start times per animal from a total of three animals. The mean signal-to-noise ratios (SNRs) of pyruvate, lactate, and alanine were calculated and compared between different acquisition start times. Based on the SNRs of lactate and alanine, we identified the optimal acquisition start timing for each organ. Results: For the brain, the acquisition start time of 18 s provided the highest mean SNR of lactate. At 18 s, however, the lactate signal predominantly originated from not the brain, but the blood vessels; therefore, the acquisition start time of 22 s was recommended for 3D 13C MRSI of the rat brain. For the kidney, all three metabolites demonstrated the highest mean SNR at the acquisition start time of 32 s. Similarly, the acquisition start time of 22 s provided the highest SNRs for all three metabolites in the liver. Conclusion: In this study, the acquisition start timing was optimized in an attempt to maximize metabolic signals in hyperpolarized 3D 13C MRSI examination with [1-13C] pyruvate as a substrate. We investigated the changes in metabolic signal sensitivity in the brain, kidney, and liver of rats to establish the optimal acquisition start time for each organ. We expect the results from this study to be of help in future studies.

A Study on Effective Interpretation of AI Model based on Reference (Reference 기반 AI 모델의 효과적인 해석에 관한 연구)

  • Hyun-woo Lee;Tae-hyun Han;Yeong-ji Park;Tae-jin Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.411-425
    • /
    • 2023
  • Today, AI (Artificial Intelligence) technology is widely used in various fields, performing classification and regression tasks according to the purpose of use, and research is also actively progressing. Especially in the field of security, unexpected threats need to be detected, and unsupervised learning-based anomaly detection techniques that can detect threats without adding known threat information to the model training process are promising methods. However, most of the preceding studies that provide interpretability for AI judgments are designed for supervised learning, so it is difficult to apply them to unsupervised learning models with fundamentally different learning methods. In addition, previously researched vision-centered AI mechanism interpretation studies are not suitable for application to the security field that is not expressed in images. Therefore, In this paper, we use a technique that provides interpretability for detected anomalies by searching for and comparing optimization references, which are the source of intrusion attacks. In this paper, based on reference, we propose additional logic to search for data closest to real data. Based on real data, it aims to provide a more intuitive interpretation of anomalies and to promote effective use of an anomaly detection model in the security field.

MAGICal Synthesis: Memory-Efficient Approach for Generative Semiconductor Package Image Construction (MAGICal Synthesis: 반도체 패키지 이미지 생성을 위한 메모리 효율적 접근법)

  • Yunbin Chang;Wonyong Choi;Keejun Han
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.69-78
    • /
    • 2023
  • With the rapid growth of artificial intelligence, the demand for semiconductors is enormously increasing everywhere. To ensure the manufacturing quality and quantity simultaneously, the importance of automatic defect detection during the packaging process has been re-visited by adapting various deep learning-based methodologies into automatic packaging defect inspection. Deep learning (DL) models require a large amount of data for training, but due to the nature of the semiconductor industry where security is important, sharing and labeling of relevant data is challenging, making it difficult for model training. In this study, we propose a new framework for securing sufficient data for DL models with fewer computing resources through a divide-and-conquer approach. The proposed method divides high-resolution images into pre-defined sub-regions and assigns conditional labels to each region, then trains individual sub-regions and boundaries with boundary loss inducing the globally coherent and seamless images. Afterwards, full-size image is reconstructed by combining divided sub-regions. The experimental results show that the images obtained through this research have high efficiency, consistency, quality, and generality.

Vest-type System on Machine Learning-based Algorithm to Detect and Predict Falls

  • Ho-Chul Kim;Ho-Seong Hwang;Kwon-Hee Lee;Min-Hee Kim
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.43-54
    • /
    • 2024
  • Purpose: Falls among persons older than 65 years are a significant concern due to their frequency and severity. This study aimed to develop a vest-type embedded artificial intelligence (AI) system capable of detecting and predicting falls in various scenarios. Methods: In this study, we established and developed a vest-type embedded AI system to judge and predict falls in various directions and situations. To train the AI, we collected data using acceleration and gyroscope values from a six-axis sensor attached to the seventh cervical and the second sacral vertebrae of the user, considering accurate motion analysis of the human body. The model was constructed using a neural network-based AI prediction algorithm to anticipate the direction of falls using the collected pedestrian data. Results: We focused on developing a lightweight and efficient fall prediction model for integration into an embedded AI algorithm system, ensuring real-time network optimization. Our results showed that the accuracy of fall occurrence and direction prediction using the trained fall prediction model was 89.0% and 78.8%, respectively. Furthermore, the fall occurrence and direction prediction accuracy of the model quantized for embedded porting was 87.0 % and 75.5 %, respectively. Conclusion: The developed fall detection and prediction system, designed as a vest-type with an embedded AI algorithm, offers the potential to provide real-time feedback to pedestrians in clinical settings and proactively prepare for accidents.

A Study on Multiplexer Assignment Problem for Efficient Dronebot Network (효율적인 드론봇 네트워크 구성을 위한 Multiplexer 할당모형에 관한 연구)

  • Seungwon Baik
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.2
    • /
    • pp.17-22
    • /
    • 2023
  • In the midst of the development of science and technology based on the 4th industrial revolution, the ROK Army is moving forward with the ARMY TIGER 4.0 system, a ground combat system that combines future advanced science and technology. The system is developing around an AI-based hyper-connected ground combat system, and has mobility, intelligence, and networking as core concepts. Especially, the dronebot combat system is used as a compound word that refers to unmanned combat systems including drones and ground unmanned systems. In future battlefields, it is expected that the use of unmanned and artificial intelligence-based weapon systems will increase. During the transition to a complete unmanned system, it is a very important issue to ensure connectivity individual unmanned systems themselves or between manned and unmanned systems on the battlefield. This paper introduces the Multiplexer Allocation Problem (MAP) for effective command control and communication of UAV/UGV, and proposes a heuristic algorithm. In addition, the performance of the proposed algorithm is analyzed by comparing the solutions and computing time. Also, we discuss future research area for the MAP.

  • PDF

A Study on Efficient Stowage Planning for Vehicle Carriers (차량 운반선의 효율적인 선적 계획 수립에 관한 연구)

  • JI Yeon Kim;Ki-Hwan Kim;Young-Jin Kang;Seok Chan Jeong;Hoon Lee
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.27-36
    • /
    • 2023
  • The logistics industry is becoming increasingly important as it is closely linked to our daily lives, storing and transporting the goods and resources that businesses and consumers need. With its growing importance, the logistics industry strives to provide efficient and sustainable services through innovations and artificial intelligence are being used to optimize logistics networks, make transport more environmentally friendly, and more. Research and improvements are being undertaken in various domains, such as logistics network optimization and environmentally friendly transportation through technological innovation and artificial intelligence; however, there still needs to be more research in certain aspects of the logistics industry. In particular, devising an optimized stowage plan for vehicle carriers, considering various factors, involves a significant degree of complexity and remains an under-researched area. This paper studies the loading and unloading algorithms that enable to quickly and efficiently establish stowage plans for vehicle carriers, reflecting a variety of considerations and rules for stowage planning.

An Empirical Study on Statistical Optimization Model for the Portfolio Construction of Sponsored Search Advertising(SSA) (키워드검색광고 포트폴리오 구성을 위한 통계적 최적화 모델에 대한 실증분석)

  • Yang, Hognkyu;Hong, Juneseok;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.167-194
    • /
    • 2019
  • This research starts from the four basic concepts of incentive incompatibility, limited information, myopia and decision variable which are confronted when making decisions in keyword bidding. In order to make these concept concrete, four framework approaches are designed as follows; Strategic approach for the incentive incompatibility, Statistical approach for the limited information, Alternative optimization for myopia, and New model approach for decision variable. The purpose of this research is to propose the statistical optimization model in constructing the portfolio of Sponsored Search Advertising (SSA) in the Sponsor's perspective through empirical tests which can be used in portfolio decision making. Previous research up to date formulates the CTR estimation model using CPC, Rank, Impression, CVR, etc., individually or collectively as the independent variables. However, many of the variables are not controllable in keyword bidding. Only CPC and Rank can be used as decision variables in the bidding system. Classical SSA model is designed on the basic assumption that the CPC is the decision variable and CTR is the response variable. However, this classical model has so many huddles in the estimation of CTR. The main problem is the uncertainty between CPC and Rank. In keyword bid, CPC is continuously fluctuating even at the same Rank. This uncertainty usually raises questions about the credibility of CTR, along with the practical management problems. Sponsors make decisions in keyword bids under the limited information, and the strategic portfolio approach based on statistical models is necessary. In order to solve the problem in Classical SSA model, the New SSA model frame is designed on the basic assumption that Rank is the decision variable. Rank is proposed as the best decision variable in predicting the CTR in many papers. Further, most of the search engine platforms provide the options and algorithms to make it possible to bid with Rank. Sponsors can participate in the keyword bidding with Rank. Therefore, this paper tries to test the validity of this new SSA model and the applicability to construct the optimal portfolio in keyword bidding. Research process is as follows; In order to perform the optimization analysis in constructing the keyword portfolio under the New SSA model, this study proposes the criteria for categorizing the keywords, selects the representing keywords for each category, shows the non-linearity relationship, screens the scenarios for CTR and CPC estimation, selects the best fit model through Goodness-of-Fit (GOF) test, formulates the optimization models, confirms the Spillover effects, and suggests the modified optimization model reflecting Spillover and some strategic recommendations. Tests of Optimization models using these CTR/CPC estimation models are empirically performed with the objective functions of (1) maximizing CTR (CTR optimization model) and of (2) maximizing expected profit reflecting CVR (namely, CVR optimization model). Both of the CTR and CVR optimization test result show that the suggested SSA model confirms the significant improvements and this model is valid in constructing the keyword portfolio using the CTR/CPC estimation models suggested in this study. However, one critical problem is found in the CVR optimization model. Important keywords are excluded from the keyword portfolio due to the myopia of the immediate low profit at present. In order to solve this problem, Markov Chain analysis is carried out and the concept of Core Transit Keyword (CTK) and Expected Opportunity Profit (EOP) are introduced. The Revised CVR Optimization model is proposed and is tested and shows validity in constructing the portfolio. Strategic guidelines and insights are as follows; Brand keywords are usually dominant in almost every aspects of CTR, CVR, the expected profit, etc. Now, it is found that the Generic keywords are the CTK and have the spillover potentials which might increase consumers awareness and lead them to Brand keyword. That's why the Generic keyword should be focused in the keyword bidding. The contribution of the thesis is to propose the novel SSA model based on Rank as decision variable, to propose to manage the keyword portfolio by categories according to the characteristics of keywords, to propose the statistical modelling and managing based on the Rank in constructing the keyword portfolio, and to perform empirical tests and propose a new strategic guidelines to focus on the CTK and to propose the modified CVR optimization objective function reflecting the spillover effect in stead of the previous expected profit models.

Hierarchical Particle Swarm Optimization for Multi UAV Waypoints Planning Under Various Threats (다양한 위협 하에서 복수 무인기의 경로점 계획을 위한 계층적 입자 군집 최적화)

  • Chung, Wonmo;Kim, Myunggun;Lee, Sanha;Lee, Sang-Pill;Park, Chun-Shin;Son, Hungsun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.385-391
    • /
    • 2022
  • This paper presents to develop a path planning algorithm combining gradient descent-based path planning (GBPP) and particle swarm optimization (PSO) for considering prohibited flight areas, terrain information, and characteristics of fixed-wing unmmaned aerial vehicle (UAV) in 3D space. Path can be generated fast using GBPP, but it is often happened that an unsafe path can be generated by converging to a local minimum depending on the initial path. Bio-inspired swarm intelligence algorithms, such as Genetic algorithm (GA) and PSO, can avoid the local minima problem by sampling several paths. However, if the number of optimal variable increases due to an increase in the number of UAVs and waypoints, it requires heavy computation time and efforts due to increasing the number of particles accordingly. To solve the disadvantages of the two algorithms, hierarchical path planning algorithm associated with hierarchical particle swarm optimization (HPSO) is developed by defining the initial path, which is the input of GBPP, as two variables including particles variables. Feasibility of the proposed algorithm is verified by software-in-the-loop simulation (SILS) of flight control computer (FCC) for UAVs.

A Digital Twin Simulation Model for Reducing Congestion of Urban Railways in Busan (부산광역시 도시철도 혼잡도 완화를 위한 디지털 트윈 시뮬레이션 모델 개발)

  • Choi, Seon Han;Choi, Piljoo;Chang, Won-Du;Lee, Jihwan
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1270-1285
    • /
    • 2020
  • As a representative concept of the fourth industrial revolution era where everything is digitized, digital twin means analyzing and optimizing a complex system using a simulation model synchronized with the system. In this paper, we propose a digital twin simulation model for the efficient operation of urban railways in Busan. Due to the geopolitical nature of Busan, where there are many mountains and narrow roads, the railways are more useful than other public transportation. However, this inversely results in a high level of congestion, which is an inconvenience to citizens and may be fatal to the spread of the virus, such as COVID19. Considering these characteristics, the proposed model analyzes the congestion level of the railways in Busan. The model is developed based on a mathematical formalism called discrete-event system specification and deduces the congestion level and the average waiting time of passengers depending on the train schedule. In addition, a new schedule to reduce the congestion level is derived through particle swarm optimization, which helps the efficient operation of the railways. Although the model is developed for the railways in Busan, it can also be used for railways in other cities where a high level of congestion is a problem.