• 제목/요약/키워드: Intelligence Optimization

검색결과 384건 처리시간 0.03초

Enhanced Hybrid XOR-based Artificial Bee Colony Using PSO Algorithm for Energy Efficient Binary Optimization

  • Baguda, Yakubu S.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.312-320
    • /
    • 2021
  • Increase in computational cost and exhaustive search can lead to more complexity and computational energy. Thus, there is need for effective and efficient scheme to reduce the complexity to achieve optimal energy utilization. This will improve the energy efficiency and enhance the proficiency in terms of the resources needed to achieve convergence. This paper primarily focuses on the development of hybrid swarm intelligence scheme for reducing the computational complexity in binary optimization. In order to reduce the complexity, both artificial bee colony (ABC) and particle swarm optimization (PSO) have been employed to effectively minimize the exhaustive search and increase convergence. First, a new approach using ABC and PSO has been proposed and developed to solve the binary optimization problem. Second, the scout for good quality food sources is accomplished through the deployment of PSO in order to optimally search and explore the best source. Extensive experimental simulations conducted have demonstrate that the proposed scheme outperforms the ABC approaches for reducing complexity and energy consumption in terms of convergence, search and error minimization performance measures.

Computer Architecture Execution Time Optimization Using Swarm in Machine Learning

  • Sarah AlBarakati;Sally AlQarni;Rehab K. Qarout;Kaouther Laabidi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권10호
    • /
    • pp.49-56
    • /
    • 2023
  • Computer architecture serves as a link between application requirements and underlying technology capabilities such as technical, mathematical, medical, and business applications' computational and storage demands are constantly increasing. Machine learning these days grown and used in many fields and it performed better than traditional computing in applications that need to be implemented by using mathematical algorithms. A mathematical algorithm requires more extensive and quicker calculations, higher computer architecture specification, and takes longer execution time. Therefore, there is a need to improve the use of computer hardware such as CPU, memory, etc. optimization has a main role to reduce the execution time and improve the utilization of computer recourses. And for the importance of execution time in implementing machine learning supervised module linear regression, in this paper we focus on optimizing machine learning algorithms, for this purpose we write a (Diabetes prediction program) and applying on it a Practical Swarm Optimization (PSO) to reduce the execution time and improve the utilization of computer resources. Finally, a massive improvement in execution time were observed.

Development of optimization teaching and learning materials for artificial intelligence mathematics using ChatGPT and Python (ChatGPT와 파이썬을 활용한 <인공지능 수학>의 최적화 교수·학습 자료 개발 연구)

  • Lee, Seunghoon;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • 제38권3호
    • /
    • pp.459-486
    • /
    • 2024
  • The purpose of this study is to enhance understanding and utilization of the core mathematical principles of artificial intelligence, and to develop teaching and learning materials that apply algorithmic thinking and integrated methodologies. To achieve this, teaching and learning materials were developed to implement the concept of optimization through Python using ChatGPT, focusing on mean squared error and gradient descent, structured into a total of five sessions. These materials were applied to high school students, and observations of their understanding, learning methods, and attitudes showed positive responses. As a result, the effectiveness of the AI mathematics optimization teaching and learning materials developed in this study and their applicability in educational settings were confirmed.

Study for Enhanced Train Control System with Intelligent Full Prediction System (지능형열차도착예상정보 시스템을 이용한 열차제어 시스템의 성능향상에 관한 연구)

  • Kim, Yun-Bae;Yoon, Ho-Seok
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1375-1381
    • /
    • 2007
  • Optimization system for convergence point control is required for train control system, this paper introduces the way of enhanced optimization for convergence point with data of intelligence full prediction system. Also the result of the intelligence full prediction system is useful for train control system at the convergence point and passenger will take more accurate information from the prediction system.

  • PDF

Numerical solution of beam equation using neural networks and evolutionary optimization tools

  • Babaei, Mehdi;Atasoy, Arman;Hajirasouliha, Iman;Mollaei, Somayeh;Jalilkhani, Maysam
    • Advances in Computational Design
    • /
    • 제7권1호
    • /
    • pp.1-17
    • /
    • 2022
  • In this study, a new strategy is presented to transmit the fundamental elastic beam problem into the modern optimization platform and solve it by using artificial intelligence (AI) tools. As a practical example, deflection of Euler-Bernoulli beam is mathematically formulated by 2nd-order ordinary differential equations (ODEs) in accordance to the classical beam theory. This fundamental engineer problem is then transmitted from classic formulation to its artificial-intelligence presentation where the behavior of the beam is simulated by using neural networks (NNs). The supervised training strategy is employed in the developed NNs implemented in the heuristic optimization algorithms as the fitness function. Different evolutionary optimization tools such as genetic algorithm (GA) and particle swarm optimization (PSO) are used to solve this non-linear optimization problem. The step-by-step procedure of the proposed method is presented in the form of a practical flowchart. The results indicate that the proposed method of using AI toolsin solving beam ODEs can efficiently lead to accurate solutions with low computational costs, and should prove useful to solve more complex practical applications.

Prolong life-span of WSN using clustering method via swarm intelligence and dynamical threshold control scheme

  • Bao, Kaiyang;Ma, Xiaoyuan;Wei, Jianming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2504-2526
    • /
    • 2016
  • Wireless sensors are always deployed in brutal environments, but as we know, the nodes are powered only by non-replaceable batteries with limited energy. Sending, receiving and transporting information require the supply of energy. The essential problem of wireless sensor network (WSN) is to save energy consumption and prolong network lifetime. This paper presents a new communication protocol for WSN called Dynamical Threshold Control Algorithm with three-parameter Particle Swarm Optimization and Ant Colony Optimization based on residual energy (DPA). We first use the state of WSN to partition the region adaptively. Moreover, a three-parameter of particle swarm optimization (PSO) algorithm is proposed and a new fitness function is obtained. The optimal path among the CHs and Base Station (BS) is obtained by the ant colony optimization (ACO) algorithm based on residual energy. Dynamical threshold control algorithm (DTCA) is introduced when we re-select the CHs. Compared to the results obtained by using APSO, ANT and I-LEACH protocols, our DPA protocol tremendously prolongs the lifecycle of network. We observe 48.3%, 43.0%, and 24.9% more percentages of rounds respectively performed by DPA over APSO, ANT and I-LEACH.

Artificial Intelligence Engine for Numerical Analysis of Surface Waves (표면파의 수치해석을 위한 인공지능 엔진 개발)

  • Kwak Hyo-Gyoung;Kim Jae-Hong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.89-96
    • /
    • 2006
  • Nondestructive evaluation using surface waves needs an analytical solution for the reference value to compare with experimental data. Finite element analysis is very powerful tool to simulate the wave propagation, but has some defects. It is very expensive and high time-complexity for the required high resolution. For those reasons, it is hard to implement an optimization problem in the actual situation. The developed engine in this paper can substitute for the finite element analysis of surface waves propagation, and it accomplishes the fast analysis possible to be used in optimization. Including this artificial intelligence engine, most of soft computing algorithms can be applied on the special database. The database of surface waves propagation is easily constructed with the results of finite element analysis after reducing the dimensions of data. The principal wavelet-component analysis is an efficient method to simplify the transient wave signal into some representative peaks. At the end, artificial neural network based on the database make it possible to invent the artificial intelligence engine.

  • PDF

Artificial Intelligence and Stochastic Optimization Framework for Trip Purpose Based Route Planning

  • Wen YI;Huiwen WANG;Shuaian WANG;Xiaobo QU
    • International conference on construction engineering and project management
    • /
    • The 10th International Conference on Construction Engineering and Project Management
    • /
    • pp.242-246
    • /
    • 2024
  • Automated route planning is an important tool in the field of built environment. For example, a high-quality route planning method can improve the logistics planning of projects, thereby enhancing the performance of projects and the effectiveness of management. However, the traditional automated route planning is performed based on the predicted mean value travel time of candidate routes. Such a point estimate neglects the purpose of the trip and can further lead to a suboptimal decision. Motivated by this challenge, this study proposes an innovative framework for trip purpose based route planning. The proposed artificial intelligence and stochastic optimization framework recommends the most appropriate travel route for decision makers by fully considering their trip requirements beyond just the shortest mean value travel time. In addition to its theoretical contributions, our proposed route planning method will also contribute to the current logistics planning practice. Future research may be devoted to the real-life implementation of the proposed methodology in a broader context to provide empirical insights for practitioners in various industries.

Fuzzy Controller Design by Means of Genetic Optimization and NFN-Based Estimation Technique

  • Oh, Sung-Kwun;Park, Seok-Beom;Kim, Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권3호
    • /
    • pp.362-373
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of the fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and neurofuzzy networks (NFN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, tuning of the scaling factors of the fuzzy controller is carried out, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based NFN. The developed approach is applied to an inverted pendulum nonlinear system where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

Compressive strength estimation of eco-friendly geopolymer concrete: Application of hybrid machine learning techniques

  • Xiang, Yang;Jiang, Daibo;Hateo, Gou
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.877-894
    • /
    • 2022
  • Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues associated with the production of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete to help reduce CO2 emissions in the construction industry. The compressive strength (fc) of GPC is predicted using artificial intelligence approaches in the present study when ground granulated blast-furnace slag (GGBS) is substituted with natural zeolite (NZ), silica fume (SF), and varying NaOH concentrations. For this purpose, two machine learning methods multi-layer perceptron (MLP) and radial basis function (RBF) were considered and hybridized with arithmetic optimization algorithm (AOA), and grey wolf optimization algorithm (GWO). According to the results, all methods performed very well in predicting the fc of GPC. The proposed AOA - MLP might be identified as the outperformed framework, although other methodologies (AOA - RBF, GWO - RBF, and GWO - MLP) were also reliable in the fc of GPC forecasting process.