• 제목/요약/키워드: Integrity of Replication

검색결과 19건 처리시간 0.034초

미세 형상을 갖는 DVD-RAM 기판의 성형에 관한 연구 (Fabrication of the Micro-structured DVD-RAM Substrates)

  • 문수동
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.167-170
    • /
    • 2000
  • Recently the sub-micron structured substrates of 0.74 ${mu}ell$ track pitch and 800 $\AA$groove depth are required for DVD-RAM and the track pitch is expected to be narrower as the need for the information storage density is getting higher. For the accurate replication of the land-groove structure in the stamper to the plastic substrates it is important to control the injection -compression molding process such that the integrity of the replication for the land-groove structure is maximized. in the present study polycarbonate substrates were fabricated by injection comression molding and the land-groove structure regarded as one of mold temperature and the compression pressure on the integrity of the replication were examined experimentally. An efficient design methodology using the response surface method (RSM) the central composite design(CCD) technique and the analysis-of-variance (ANOVA) was developed to obtain the optimum processing conditions which maximize the integrity of the replication with a limited number of experiments.

  • PDF

Actin-related protein BAF53 is essential for the formation of replication foci

  • Kwon, Su-Jin;Kwon, Hyock-Man
    • Animal cells and systems
    • /
    • 제16권3호
    • /
    • pp.183-189
    • /
    • 2012
  • It has been suggested that chromatin is organized into the stable structures that provide fundamental units of chromosome architecture in interphase mammalian cells. The stable structures of chromatin can be visualized as replication foci when replicating DNA is labeled with thymidine analogs. Previously, we showed that the chromosome territory expanded after BAF53 knockdown. In this study, we found that BAF53 is required for the formation of replication foci. DNA replication was not impaired in BAF53 knockdown cells, suggesting that the decrease in the number of replication foci is due to disintegration of replication foci, but not suppression of DNA replication. The attractive forces that maintain structural integrity of replication foci could be disrupted by BAF53 knockdown, and it may be responsible, at least in part, for the expansion of chromosome territories after BAF53 knockdown.

DVD-RAM 기판의 복굴절, Radial-tilt 및 전사성 향상을 위한 사출압축성형공정 최적화 (An Optimum Design of Replication Process to Improve Birefringence, Radial-tilt and Land-Groove Structure in DVD-RAM Substrates)

  • 이남석;성기병;강신일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.438-444
    • /
    • 2001
  • The objective of this study is to provide a simple methodology to find optimum processing conditions to fabricate sub-micron structured DVD-RAM substrates with superb optical and geometrical properties. It was found that the birefringence, which is regarded as one of the most important optical properties for an optical disk, was very sensitive to the mold wall temperature history. Also, the integrity of the replication, represented by the land-groove structure and the radial tilt were influenced by the mold temperature and the compression pressure. A set of optimum conditions were obtained by applying Design of Experiment and the objective functions composed of three different objectives.

  • PDF

The Actin-Related Protein BAF53 Is Essential for Chromosomal Subdomain Integrity

  • Lee, Kiwon;Kim, Ji Hye;Kwon, Hyockman
    • Molecules and Cells
    • /
    • 제38권9호
    • /
    • pp.789-795
    • /
    • 2015
  • A chromosome territory is composed of chromosomal subdomains. The internal structure of chromosomal subdomains provides a structural framework for many genomic activities such as replication and DNA repair, and thus is key to determining the basis of their mechanisms. However, the internal structure and regulating proteins of a chromosomal subdomain remains elusive. Previously, we showed that the chromosome territory expanded after BAF53 knockdown. Because the integrity of chromosomal subdomains is a deciding factor of the volume of a chromosome territory, we examined here the effect of BAF53 knockdown on chromosomal subdomains. We found that BAF53 knockdown led to the disintegration of histone H2B-GFP-visualized chromosomal subdomains and BrdU-labeled replication foci. In addition, the size of DNA loops measured by the maximum fluorescent halo technique increased and became irregular after BAF53 knockdown, indicating DNA loops were released from the residual nuclear structure. These data can be accounted for by the model that BAF53 is prerequisite for maintaining the structural integrity of chromosomal subdomains.

α-Kleisin subunit of cohesin preserves the genome integrity of embryonic stem cells

  • Seobin Yoon;Eui-Hwan Choi;Seo Jung Park;Keun Pil Kim
    • BMB Reports
    • /
    • 제56권2호
    • /
    • pp.108-113
    • /
    • 2023
  • Cohesin is a ring-shaped protein complex that comprises the SMC1, SMC3, and α-kleisin proteins, STAG1/2/3 subunits, and auxiliary factors. Cohesin participates in chromatin remodeling, chromosome segregation, DNA replication, and gene expression regulation during the cell cycle. Mitosis-specific α-kleisin factor RAD21 and meiosis-specific α-kleisin factor REC8 are expressed in embryonic stem cells (ESCs) to maintain pluripotency. Here, we demonstrated that RAD21 and REC8 were involved in maintaining genomic stability and modulating chromatin modification in murine ESCs. When the kleisin subunits were depleted, DNA repair genes were downregulated, thereby reducing cell viability and causing replication protein A (RPA) accumulation. This finding suggested that the repair of exposed single-stranded DNA was inefficient. Furthermore, the depletion of kleisin subunits induced DNA hypermethylation by upregulating DNA methylation proteins. Thus, we proposed that the cohesin complex plays two distinct roles in chromatin remodeling and genomic integrity to ensure the maintenance of pluripotency in ESCs.

DVD-RAM 기판의 복굴절, Radial-Tilt 및 전사성 향상을 위한 사출압축성형공정 최적화 (An Optimum Design of Replication Process to Improve Birefringence, Radial-Tilt and Land-Groove Structure in DVD-RAM Substrates)

  • 강신일;성기병;이남석
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.637-643
    • /
    • 2002
  • The objective of this study is to provide a simple methodology to find optimum processing conditions to fabricate sub-micron structured DVD-RAM substrates with superb optical and geometrical properties. It was fecund that the birefringence, which is regarded as one of the most important optical properties for an optical disk, was very sensitive to the mold wall temperature history. Also, the integrity of the replication, represented by the land-groove structure and the radial tilt were influenced by the mold temperature and the compression pressure. A set of optimum conditions were obtained by applying Design of Experiment and the objective functions composed of three different objectives.

신장 기능과 틸로미어 (Kidneys with bad ends)

  • 서동철
    • Childhood Kidney Diseases
    • /
    • 제12권1호
    • /
    • pp.11-22
    • /
    • 2008
  • Telomeres consist of tandem guanine-thymine(G-T) repeats in most eukaryotic chromosomes. Human telomeres are predominantly linear, double stranded DNA as they ended in 30-200 nucleotides(bases,b) 3'-overhangs. In DNA replication, removal of the terminal RNA primer from the lagging strand results in a 3'-overhang of uncopied DNA. This is because of bidirectional DNA replication and specificity of unidirectional DNA polymerase. After the replication, parental and daughter DNA strands have unequal lengths due to a combination of the end-replication problem and end-processing events. The gradual chromosome shortening is observed in most somatic cells and eventually leads to cellular senescence. Telomere shortening could be a molecular clock that signals the replicative senescence. The shortening of telomeric ends of human chromosomes, leading to sudden growth arrest, triggers DNA instability as biological switches. In addition, telomere dysfunction may cause chronic allograft nephropathy or kidney cancers. The renal cell carcinoma(RCC) in women may be less aggressive and have less genomic instability than in man. Younger patients with telomere dysfunction are at a higher risk for RCC than older patients. Thus, telomeres maintain the integrity of the genome and are involved in cellular aging and cancer. By studying the telomeric DNA, we may characterize the genetic determinants in diseases and discover the tools in molecular medicine.

  • PDF

BR2K: A Replication and Recovery Technique Using Kubernetes for Blockchain Services

  • Kwon, Min-Ho;Lee, Myung-Joon
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권10호
    • /
    • pp.77-86
    • /
    • 2020
  • 본 논문에서는 블록체인 응용서비스를 견고하게 실행하고, 이의 실패 시 체계적인 복구를 지원하는 BR2K(Blockchain application, Replication & Recovery technique using Kubernetes)기법을 제안한다. 블록체인 서비스는 블록체인의 특징인 탈중앙화, 높은 보안성, 그리고 데이터 무결성 등을 기반으로 행정, 금융, 그리고 의료 시스템 같은 다양한 분야에서 개발 및 적용되고 있다. 따라서 이와 같이 서비스의 연속성이 중요한 분야에서 블록체인 서비스 실행에 대한 견고성이 제공하는 것이 필요하며, 서비스 실패에 대한 복구 방안 또한 필요한 실정이다. 이를 위하여, BR2K는 블록체인 응용서비스의 지속 가능한 실행을 체계적으로 지원하는 실행 복제 기법을 제공한다. 또한, 블록체인 서비스 레지스트리 기반의 견고한 컨테이너 레지스트리를 소개하고 이를 이용하여 서비스 실패에 대한 복구를 체계적으로 지원한다. 더불어, 블록체인 서비스 개발 프레임워크인 트러플을 쿠버네티스 컨테이너 관리 도구를 활용할 수 있도록 확장하고, 이를 바탕으로 서비스를 신속하게 배포하는 기법을 제공한다.

The Replication Protein Cdc6 Suppresses Centrosome Over-Duplication in a Manner Independent of Its ATPase Activity

  • Kim, Gwang Su;Lee, Inyoung;Kim, Ji Hun;Hwang, Deog Su
    • Molecules and Cells
    • /
    • 제40권12호
    • /
    • pp.925-934
    • /
    • 2017
  • The Cdc6 protein is essential for the initiation of chromosomal replication and functions as a licensing factor to maintain chromosome integrity. During the S and G2 phases of the cell cycle, Cdc6 has been found to inhibit the recruitment of pericentriolar material (PCM) proteins to the centrosome and to suppress centrosome over-duplication. In this report, we analyzed the correlation between these two functions of Cdc6 at the centrosome. Cdc6 depletion increased the population of cells showing centrosome over-duplication and premature centrosome separation; Cdc6 expression reversed these changes. Deletion and fusion experiments revealed that the 18 amino acid residues (197-214) of Cdc6, which were fused to the Cdc6-centrosomal localization signal, suppressed centrosome over-duplication and premature centrosome separation. Cdc6 mutant proteins that showed defective ATP binding or hydrolysis did not exhibit a significant difference in suppressing centrosome over-duplication, compared to the wild type protein. In contrast to the Cdc6-mediated inhibition of PCM protein recruitment to the centrosome, the independence of Cdc6 on its ATPase activity for suppressing centrosome over-duplication, along with the difference between the Cdc6 protein regions participating in the two functions, suggested that Cdc6 controls centrosome duplication in a manner independent of its recruitment of PCM proteins to the centrosome.