• Title/Summary/Keyword: Integrity Station

Search Result 88, Processing Time 0.021 seconds

State of the Art on GNSS Reflectometry and Marine Applications (위성신호 반사계측(GNSS-R) 기술 현황과 해양 응용분야)

  • Seo, Kiyeol;Park, Sang-Hyun;Park, Jihye
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.402-408
    • /
    • 2021
  • GNSS-Reflectometry (GNSS-R) is a technique for measuring and analyzing signals transmitted from satellites, reflecting on the surface of land or sea. GNSS-R is mainly used for measuring the water level variation, typhoon and meteorological anomaly, soil moisture, and snow depth. This paper describes the concept and measurement principle of GNSS-R technology, especially focusing on the field of marine utilization and its feasibility. In particular, it presents the applications of this technique for monitoring the safety of marine environment as well as the marine vessel and their utilization areas based on currently available infrastructure on the ground and maritime reference stations, such as the existing differential GNSS reference stations and integrity monitors (DGNSS RSIM), and GNSS reference station infrastructure, using the ground-based and the satellite-based GNSS-R approaches.

A SE Approach to Assess The Success Window of In-Vessel Retention Strategy

  • Udrescu, Alexandra-Maria;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.27-37
    • /
    • 2020
  • The Fukushima Daiichi accident in 2011 revealed some vulnerabilities of existing Nuclear Power Plants (NPPs) under extended Station Blackout (SBO) accident conditions. One of the key Severe Accident Management (SAM) strategies developed post Fukushima accident is the In-Vessel Retention (IVR) Strategy which aims to retain the structural integrity of the Reactor Pressure Vessel (RPV). RELAP/SCDAPSIM/MOD3.4 is selected to predict the thermal-hydraulic response of APR1400 undergoing an extended SBO. To assess the effectiveness of the IVR strategy, it is essential to quantify the underlying uncertainties. In this work, both the epistemic and aleatory uncertainties are considered to identify the success window of the IVR strategy. A set of in-vessel relevant phenomena were identified based on Phenomena Identification and Ranking Tables (PIRT) developed for severe accidents and propagated through the thermal-hydraulic model using Wilk's sampling method. For this work, a Systems Engineering (SE) approach is applied to facilitate the development process of assessing the reliability and robustness of the APR1400 IVR strategy. Specifically, the Kossiakoff SE method is used to identify the requirements, functions and physical architecture, and to develop a design verification and validation plan. Using the SE approach provides a systematic tool to successfully achieve the research goal by linking each requirement to a verification or validation test with predefined success criteria at each stage of the model development. The developed model identified the conditions necessary for successful implementation of the IVR strategy which maintains the vessel integrity and prevents a melt-through.

Influence Analysis on the Number of Ruptured SG u-tubes During mSGTR in CANDU-6 Plants (중수로 증기발생기 다중 전열관 파단사고시 파단 전열관 수에 대한 영향 분석)

  • Seon Oh Yu;Kyung Won Lee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.37-42
    • /
    • 2022
  • An influence analysis on multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout is performed to compare the plant responses according to the number of ruptured u-tubes under the assumption of a total of 10 ruptured u-tubes. In all calculation cases, the transient behaviour of major thermal-hydraulic parameters, such as the discharge flow rate through the ruptured u-tubes, reactor header pressure, and void fraction in the fuel channels is found to be overall similar to that of the base case having a single SG with 10 u-tubes ruptured. Additionally, as the conditions of low-flow coolant with high void fraction in the broken loop continued, causing the degradation of decay heat removal, the peak cladding temperature (PCT) would be expected to exceed the limit criteria for ensuring nuclear fuel integrity. However, despite the same total number of ruptured u-tubes, because of the different connection configuration between the SG and pressurizer, a difference is foud in time between the pressurizer low-level signal and reactor header low-pressure signal, affecting the time to trip the reactor and to reach the PCT limit. The present study is expected to provide the technical basis for the accident management strategy for mSGTR transient conditions of CANDU-6 plants.

Data Analysis of Inertial Sensors for Train Positioning Detection System (열차위치검지 시스템을 위한 관성센서 데이터 분석 연구)

  • Kim, Seong Jin;Park, Sungsoo;Lee, Jae-Ho;Kang, Donghoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • Train positioning detection information is fundamental for high-speed railroad inspection, making it possible to simultaneously determine the status and evaluate the integrity of railroad equipment. This paper presents the results of measurements and an analysis of an inertial measurement unit (IMU) used as a positioning detection sensors. Acceleration and angular rate measurements from the IMU were analyzed in the amplitude and frequency domains, with a discussion on vibration and train motions. Using these results and GPS information, the positioning detection of a Korean tilting train express was performed from Naju station to Illo station on the Honam-line. The results of a synchronized analysis of sensor measurements and train motion can help in the design of a train location detection system and improve the positioning detection performance.

Structural model updating of the Gageocho Ocean Research Station using mass reallocation method

  • Kim, Byungmo;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.291-309
    • /
    • 2020
  • To study oceanic and meteorological problems related to climate change, Korea has been operating several ocean research stations (ORSs). In 2011, the Gageocho ORS was attacked by Typhoon Muifa, and its structural members and several observation devices were severely damaged. After this event, the Gageocho ORS was rehabilitated with 5 m height to account for 100-yr extreme wave height, and the vibration measurement system was equipped to monitor the structural vibrational characteristics including natural frequencies and modal damping ratios. In this study, a mass reallocation method is presented for structural model updating of the Gageocho ORS based on the experimentally identified natural frequencies. A preliminary finite element (FE) model was constructed based on design drawings, and several of the candidate baseline FE models were manually built, taking into account the different structural conditions such as corroded thickness. Among these candidate baseline FE models, the most reasonable baseline FE model was selected by comparing the differences between the identified and calculated natural frequencies; the most suitable baseline FE model was updated based on the identified modal properties, and by using the pattern search method, which is one of direct search optimization methods. The mass reallocation method is newly proposed as a means to determine the equivalent mass quantities along the height and in a floor. It was found that the natural frequencies calculated based on the updated FE model was very close to the identified natural frequencies. In conclusion, it is expected that these results, which were obtained by updating a baseline FE model, can be useful for establishing the reference database for jacket-type offshore structures, and assessing the structural integrity of the Gageocho ORS.

Water-hammer in the Pump Pipeline System with and without an Air-Chamber (에어챔버 설치에 따른 펌프관로계의 수격현상)

  • Lee, Sun-Kon;Yang, Cheol-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • When the pumps stopped in the operation by the power failure, the hydraulic transients take place in the sudden change of a velocity of pipe line. Each and every water hammer problem shows the critical stage to be greatly affected the facts of safety and reliability in case of power failure. The field tests of the water hammer executed at Cheong-Yang booster pump station having an air chamber. The effects were studied by both the practical experiments and the CFD(Computational Fluid Dynamics : Surge 2008). The result states that the system with water hammering protection equipment was much safer when power failure happens. The following data by a computational fluid dynamic analysis are to be shown below, securing the system stability and integrity. (1) With water hammering protection equipment. (1) Change of pressure : Up to $15.5\;kg/cm^2$ in contrary to estimating $16.88\;kg/cm^2$. (2) Change rate of water level : 52~33% in contrary to estimating 55~27%. (3) Note that the operational pressure of pump runs approx. 145 m, lowering 155 m of the regularity head of pump. (4) Note that the cycle of water hammering delays from 80 second to 100 second, together with easing the function of air value at the pneumatic lines. (2) Change of pressure without water hammering protection equipment : Approximate $22.86\;kg/cm^2$. The comprehensive result says that the computational fluid dynamics analysis would match well with the practical field-test. It was able to predict Max. or Min. water hammering time in a piping system. This study aims effectively to alleviate water hammering in a pipe line to be installed with air chamber at the pumping station and results in making the stability of pump system in the end.

A Light-weight PKM Mutual Authentication Protocol for Improving Initial Authentication in WiMAX (WiMAX 초기 인증을 향상시킨 경량화된 PKM 상호 인증 프로토콜)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Gil-Cheol;Lee, Sang-Ho
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.257-266
    • /
    • 2009
  • Now a days, as increased the use of mobile units like a laptop computer and PDA, the demand for high speed internet service is increasing. On the other hand, PKMv2 which is provided from IEEE 802.16e cannot support fully on the security of high speed internet service. This paper proposes light-weight mutual authentication protocol which solved security problem of PKMv2 related to integrity of mobile node for transmission of safe high speed data of mobile node operating in mobile WiMAX environment. Proposed mutual authentication protocol increases the efficiency as the user in network can move in network safely without additional procedure of authentication between subscriber and base station after user's initial authentication. Also, the proposed mutual authentication protocol is safe from the security attack (the man-in-the-middle attack and reply attack) between subscriber and base station by generating a key adopt to PRF() function using random number and secret value in order to secure certification.

Effect of multiple-failure events on accident management strategy for CANDU-6 reactors

  • YU, Seon Oh;KIM, Manwoong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3236-3246
    • /
    • 2021
  • Lessons learned from the Fukushima Daiichi nuclear power plant accident directed that multiple failures should be considered more seriously rather than single failure in the licensing bases and safety cases because attempts to take accident management measures could be unsuccessful under the high radiation environment aggravated by multiple failures, such as complete loss of electric power, uncontrollable loss of coolant inventory, failure of essential safety function recovery. In the case of the complete loss of electric power called station blackout (SBO), if there is no mitigation action for recovering safety functions, the reactor core would be overheated, and severe fuel damage could be anticipated due to the failure of the active heat sink. In such a transient condition at CANDU-6 plants, the seal failure of the primary heat transport (PHT) pumps can facilitate a consequent increase in the fuel sheath temperature and eventually lead to degradation of the fuel integrity. Therefore, it is necessary to specify the regulatory guidelines for multiple failures on a licensing basis so that licensees should prepare the accident management measures to prevent or mitigate accident conditions. In order to explore the efficiency of implementing accident management strategies for CANDU-6 plants, this study proposed a realistic accident analysis approach on the SBO transient with multiple-failure sequences such as seal failure of PHT pumps without operator's recovery actions. In this regard, a comparative study for two PHT pump seal failure modes with and without coolant seal leakage was conducted using a best-estimate code to precisely investigate the behaviors of thermal-hydraulic parameters during transient conditions. Moreover, a sensitivity analysis for different PHT pump seal leakage rates was also carried out to examine the effect of leakage rate on the system responses. This study is expected to provide the technical bases to the accident management strategy for unmitigated transient conditions with multiple failures.

A Study on the Internal Flow Analysis of High-pressure Shut-off Valve for CNG Charging Station Piping System (CNG 충전소 배관시스템용 고압 차단밸브에 대한 내부 유동해석에 관한 연구)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.773-779
    • /
    • 2021
  • CNG, which has recently been attracting attention as an alternative fuel in the transportation field to reduce emissions caused by global warming, is natural gas with abundant reserves and mainly composed of methane. Being in a gaseous state, natural gas requires the compression and liquefaction processes for transportation. Until now, general shut-off valves for liquid and gas piping have been developed in Korea, but there are few studies on shut-off valves for high pressures of about 200 bar. Currently, research on the flow analysis of valves is being actively conducted around the world. However, there are relatively many studies on large valves such as low-pressure valves or shipbuilding and marine, and the safety factor through structural analysis to check the structural integrity of the valve is checked at the design stage. Since it is necessary to have a fast response speed while minimizing pressure and speed loss due to flow change, basic research was conducted on the flow analysis of the valve to secure design data, and the numerical analysis was performed on high-pressure automatic shut-off valves applied to CNG refueling stations. After securing the basic valve shape through reverse engineering for advanced products, we compared the valve flow coefficient Cv coefficient with advanced products. As a result, it was found that the reverse engineering model was at the level of about 60%. However, we compared the Cv coefficient by modifying the reverse engineering model, and the result showed that it was improved to about 96%.

Analysis on Hypothetical Multiple Events of mSGTR and SBO at CANDU-6 Plants Using MARS-KS Code (중수로 원전 가상의 mSGTR과 SBO 다중 사건에 대한 MARS-KS 코드 분석)

  • Seon Oh YU;Kyung Won LEE;Kyung Lok BAEK;Manwoong KIM
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.18-27
    • /
    • 2021
  • This study aims to develop an improved evaluation technology for assessing CANDU-6 safety. For this purpose, the multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout (SBO) in a CANDU-6 plant was selected as a hypothetical event scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes logic models for controlling the pressure and inventory of the primary heat transport system (PHTS) decreasing due to the u-tubes' rupture, as well as the main features of PHTS with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was successfully achieved to confirm the stable convergence of the key parameters. Until the turbine trip, the fuel channels were adequately cooled by forced circulation of coolant and supply of main feedwater. However, due to the continuous reduction of PHTS pressure and inventory, the reactor and turbine were shut down and the thermal-hydraulic behaviors between intact and broken loops got asymmetric. Furthermore, as the conditions of low-flow coolant and high void fraction in the broken loop persisted, leading to degradation of decay heat removal, it was evaluated that the peak cladding temperature (PCT) exceeded the limit criteria for ensuring nuclear fuel integrity. This study is expected to provide the technical bases to the accident management strategy for transient conditions with multiple events.