• Title/Summary/Keyword: Integrins

Search Result 56, Processing Time 0.02 seconds

Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression

  • Nana, Andre Wendindonde;Yang, Pei-Ming;Lin, Hung-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6813-6823
    • /
    • 2015
  • Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor ${\beta}$ ($TGF{\beta}$) superfamily is a large group of structurally related proteins including $TGF{\beta}$ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The $TGF{\beta}$ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulinlike growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (${\alpha}v{\beta}3$, ${\alpha}5{\beta}1$) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function. On the other hand, BMPs target GICS and induce differentiation and sensitivity to chemotherapy. This multifaceted involvement of this superfamily in GBM necessitates different strategies in anti-cancer therapy. While suppressing the $TGF{\beta}$ subfamily yields advantageous results, enhancing BMPs production is also beneficial.

Transforming growth factor β1 enhances adhesion of endometrial cells to mesothelium by regulating integrin expression

  • Choi, Hee-Jung;Park, Mi-Ju;Kim, Bo-Sung;Choi, Hee-Jin;Joo, Bosun;Lee, Kyu Sup;Choi, Jung-Hye;Chung, Tae-Wook;Ha, Ki-Tae
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.429-434
    • /
    • 2017
  • Endometriosis is the abnormal growth of endometrial cells outside the uterus, causing pelvic pain and infertility. Furthermore, adhesion of endometrial tissue fragments to pelvic mesothelium is required for the initial step of endometriosis formation outside uterus. $TGF-{\beta}1$ and adhesion molecules importantly function for adhesion of endometrial tissue fragments to mesothelium outside uterus. However, the function of $TGF-{\beta}1$ on the regulation of adhesion molecule expression for adhesion of endometrial tissue fragments to mesothelium has not been fully elucidated. Interestingly, transforming growth factor ${\beta}1$ ($TGF-{\beta}1$) expression was higher in endometriotic epithelial cells than in normal endometrial cells. The adhesion efficiency of endometriotic epithelial cells to mesothelial cells was also higher than that of normal endometrial cells. Moreover, $TGF-{\beta}1$ directly induced the adhesion of endometrial cells to mesothelial cells through the regulation of integrin of ${\alpha}V$, ${\alpha}6$, ${\beta}1$, and ${\beta}4$ via the activation of the $TGF-{\beta}1/TGF-{\beta}RI/Smad2$ signaling pathway. Conversely, the adhesion of $TGF-{\beta}1-stimulated$ endometrial cells to mesothelial cells was clearly reduced following treatment with neutralizing antibodies against specific $TGF-{\beta}1-mediated$ integrins ${\alpha}V$, ${\beta}1$, and ${\beta}4$ on the endometrial cell membrane. Taken together, these results suggest that $TGF-{\beta}1$ may act to promote the initiation of endometriosis by enhancing integrin-mediated cell-cell adhesion.

The Effects of Various Extracellular Matrices on Motility of Cultured MC3T3-E1 Cell (다양한 세포외기질이 배양 골아세포의 이동에 미치는 영향)

  • Park, Beyoung Yun;Seo, Sang Woo;Lee, Won Jai;Ryu, Chang Woo;Rah, Dong Kyun;Son, Hyun Joo;Park, Jong Chul
    • Archives of Plastic Surgery
    • /
    • v.32 no.2
    • /
    • pp.143-148
    • /
    • 2005
  • Chemotactic migration of bone forming cell, osteoblast, is an important event during bone formation, bone remodeling, and fracture healing. Migration of cells is mediated by adhesion receptors, such as integrins, that link the cell to extracellular matrix ligands, type I collagen, fibronectin, laminin and depend on interaction between integrin and extracellular ligand. Our study was designed to investigate the effect of extracellular matrix like fibronectin, laminin, type I collagen on migration of osteoblast. Migration distance and speed of MC3T3-E1 cell on extracellular matrix-coated glass were measured for 24 hours using 0.01% type I collagen, 0.01% fibronectin, 100 microliter/ml laminin. The migration distance and speed of MC3T3-E1 cell was compared using a video-microscopy system. To determine migration speed, cells were viewed with a 4 phase- contrast lens and video recorded. Images were captured using a color CCD camera and saved in 8-bit full-color mode. The migration distance on 0.01% type I collagen or 0.01% fibronectin was longer than that on $100{\mu}l/ml$ laminin-coated glass. The migration speed on fibronectin-coated glass was 68 micrometer/hour which was fastest. The migration speed on type I collagen-coated glass was similar with that on fibronectin-coated glass. The latter two migration speeds were faster than that on no-coated glass. On the other hand, the average migration speed on laminin-coated glass was 37micrometer/hour and not different from that of control group. In conclusion, the extracelluar matrix ligands such as type I collagen and fibronectin seem to play an important role in cell migration. The type I collagen or fibronectin coated scaffold is more effective for migration of osteoblast in tissue engineering process.

Expression of Intercellular Adhesion Molecule-1 in Human Idiopathic Pulmonary Fibrosis (인체 특발성 폐섬유증에서 Intercellular Adhesion Molecule-1의 발현에 관한 연구)

  • Park, Sung-Soo;Shin, Dong-Ho;Kim, Tae-Wha;Lee, Dong-Hoo;Lee, Jung-Hee;Lee, Jung-Dal
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.2
    • /
    • pp.185-191
    • /
    • 1993
  • Background: Intercellular adhesion molecule-1(ICAM-1) is a 90 kD surface glycoprotein, associated with ${\alpha}_L{\beta}_2$ and ${\alpha}_M{\beta}_2$ subunit of integrins, that serve as cell-cell and cell-substratum adhesion molecules and help regulate cellular morphology, differentiation, and proliferation. The adhesion molecules likely play important roles in maintaining the normal structure and function of the lung. ICAM-1 system among many cell adhesion molecules is importantly issuing in the pathogenesis of idiopathic pulmonary fibrosis. Methods : By using $IgG_1$ monoclonal antibody for ICAM-1, we investigated immunohistochemically the expression of ICAM-1 in the formalin-fixed, paraffin-embedded tissue sections of the 3 normal cases and 6 pieces of tissues taken 3 cases with idiopathic pulmonary fibrosis. Results : In the 3 normal cases, the expressions of ICAM-1 were not discernible. Up-regulation of the ICAM-1 expression was showed in the interstitial fibroblast cells of alveolar septa in 5 pieces and proliferated alveolar pneumocytes in 1 piece among 6 pieces of tissues taken 3 cases with idiopathic pulmonary fibrosis. Conclusion : It was concluded from these findings that up-regulation of the ICAM-1 expression may be related to pathogenesis of idiopathic pulmonary fibrosis.

  • PDF

Altered Expression of ${\beta}_3$ Integrin on Sclerotic Aortic Valves in a Hypercholesterolemic Rabbit Model (고콜레스테롤혈증을 유발한 토끼의 대동맥 판막에서 ${\beta}_3$ Integrin 발현의 변화)

  • Park, Chan-Beom;Kim, Young-Du;Choe, Mi-Sun;Jin, Ung;Moon, Seok-Whan;Kim, Yong-Han;Kim, Chi-Kyung;Jo, Keon-Hyon;Kweon, Jong-Bum
    • Journal of Chest Surgery
    • /
    • v.41 no.6
    • /
    • pp.687-694
    • /
    • 2008
  • Background: Although aortic valve sclerosis causes no significant hemodynamic alterations, it is associated with an increased risk of cardiovascular death and myocardial infarction. However, the role of ${\beta}_3$ integrin in aortic valve sclerosis remains unclear. Material and Method: Twenty male New Zealand rabbits were divided into two groups. Group 1 rabbits (n=10) received a normal chow diet, while group 2 (n=10) rabbits received a diet containing 1% cholesterol for 12 weeks. After the rabbits were euthanized, their aortic valves and ascending aortas were excised for analysis. Result: Total serum cholesterol ($2,148.3{\pm}1,012.5\;mg/dL$ versus $53.7{\pm}31.8\;mg/dL$, p<0.05), triglyceride ($240.4{\pm}218.3\;mg/dL$ versus $31.6{\pm}6.4\;mg/dL$, p<0.05), and low density lipoprotein (LDL)-cholesterol($2,065.3{\pm}960.9\;mg/dL$ versus $29.1{\pm}30.9\;mg/dL$, p<0.05) levels were significantly higher in the cholesterol diet group compared with the normal diet group. Myofibroblasts and macrophages were more highly expressed in the aortic valve leaflets of rabbits in the cholesterol diet group than of those in the normal diet group. A real-time polymerase chain reaction revealed decreased ${\beta}_3$ integrin mRNA levels in the hypercholesterolemic aortic valves and aortas. Conclusion: The present study shows that hypercholesterolemia induces aortic valve sclerosis. These findings suggest that alterations in ${\beta}_3$ integrin may playa role in the development of aortic valve sclerosis.

Expression Pattern of Progesterone Receptor, Integrin, Cyclooxygenase (COX) in Human Endometrium of Patients with Endometriosis (자궁내막증 환자의 자궁내막내 성호르몬 수용체, Integrins, Cyclooxygenase의 발현과 변이 양상)

  • Kim, Mi-Ran;Park, Dong-Wook;Kwon, Hyuek-Chan;Hwang, Kyoung-Joo;Joo, Hee-Jae;Cho, Dong-Jae;Kim, Sei-Kwaug;Oh, Kie-Suk
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.2
    • /
    • pp.117-131
    • /
    • 2000
  • Objectives: To develop a new immunohistochemical marker system for supplementation of the Noyes histological classification of the endometrium in women of child bearing age with regular menstrual cycles, and to employ this system to evaluate pathologic factors involved in endometriosis, and thus to ascertain if it is useful in diagnosis. Materials and Methods: Endometrial biopsies were sampled from the posterior fundus of 41 (24 proliferative phases, 17 secretory phases) women with regular menstrual cycles (28-32 days), and each sample was immunohistochemically stained according to Noyes et al (1975) for determination of expression for estrogen receptor (ER), progesterone receptor (PR), integrin ${\alpha}_1$, ${\alpha}_4$, ${\beta}_3$, COX-1 and COX-2. Then, the PR, integrin ${\beta}_3$ and COX-2 which were clearly expressed in the luteal phase was with endometrial samples were obtained from 20 cases of normal patients (group 1) and 25 cases with endometriosis (group 2) after confirming the day of ovulation by sex steroid level measurements 7-8 days after ovulation Results: In the regular menstruation group the expression of ER showed a tendency to be increased in the proliferative phase and decreased in the secretory phase, and was the highest in the proliferative phase. However, PR in the stromal cells showed no change in the entire menstrual cycle while in the epithelial cells, PR reached a peak in the late proliferative phase and was almost absent in the secretory phase. Integrin (${\alpha}_1$, ${\alpha}_4$, and ${\beta}_3$ expression in the epithelial cells was absent in the proliferative phase but ${\alpha}_1$ was strongly expressed starting from the early secretory phase into the entire secretory phase. ${\alpha}_4$ was expressed strongly in the early and mid secretory phases and disappeared in the late proliferative phase, while ${\beta}_3$ appeared after the mid secretory phase and continued to be expressed until the late secretory phase. Expression in the stromal cells was weak overall and did not show any cyclic pattern. COX-1 expression was shown as a cyclic pattern in the stromal and epithelial cells and was particularly strongly expressed in the mid secretory phase of epithelial cells, and in the mid secretory and menstruation phase of stromal cells. In the endometrial epithelial cells there was strong expression during the entire cycle with stronger expression in the secretory phase compared to the prolferative phase. COX-2 was clearly expressed in the late proliferative, early and mid secretory phases in the stromal cells. No expression was observed in the proliferative phase of the epithelial cells, but which began to appear in the early secretory phase reaching a significant pattern from the mid secretory phase onwards. There was almost no expression in the stromal cells. In the cases with endometriosis showing normal endometrial maturation according to the Noyes classification, PR expression was increased while Integrin-${\beta}_3$의 expression was significantly decreased compared to the normal group. Also, COX-2 expression was slightly decreased in the stromal cells of patients with endometriosis while it was significantly increased in the stromal cells. Conclusion: Immunohistochemical markers can supplement the original Noyes classification of histological endometrial dating and therefore ascertain existing pathologic conditions. Particularly for patients with endometriosis with normally mature endometrial cells, changes in COX-2 and integrin expression patterns may assist in elucidating pathophysiologic mechanisms and therefore aid in the diagnosis of abnormal implantation conditions, and consequently determine a treatment modality.

  • PDF