• Title/Summary/Keyword: Integration method

Search Result 3,685, Processing Time 0.029 seconds

Insect Communication: Concepts, Channels and Contexts (곤충의 의사소통: 개념, 채널 및 상황)

  • Jang, Yi-Kweon
    • Korean journal of applied entomology
    • /
    • v.50 no.4
    • /
    • pp.383-393
    • /
    • 2011
  • Because communication facilitates behaviors that are critical for survival and reproduction, it is central to the study of behavior and evolution. One of the most important and difficult issues with respect to communication has been the definition of communication itself. Broadly, it can be defined as an exchange of information from a signaler to a receiver. However, evolution of a signal is likely possible only under conditions in which both the signaler and receiver increase fitness from the exchange of information, often referred to as "true communication." The three primary sensory channels of communication used by animals are chemical, visual, and acoustic. Chemical signals are the oldest and most widespread method of communication. Visual and acoustic signals convey a great deal of information due to ease of modulation, flexibility of signal production, and fast transmission. The most widespread contexts in which animals communicate are sexual interaction and conflict resolution. Signals used for sexual interaction typically contain information about species identity and sexual attractiveness, whereas signals used for conflict resolution may contain information about resource holding potential. Other contexts under which animals communicate include territorial defense, parent-offspring interactions, social integration, sharing of environmental information, and auto-communication.

A Study on Information System Improvement for Air Logistics SCM

  • Choi, Hyung-Rim;Park, Nam-Kyu;Lee, Hyun-Chul;Seo, Young-Joon;Shin, Joong-Jo
    • The Journal of Information Systems
    • /
    • v.14 no.3
    • /
    • pp.63-70
    • /
    • 2005
  • Compared with land logistics and sea logistics, air logistics takes not only less transportation time, but also makes just-in-time delivery possible. Because of this, in spite of high freight rates, many shippers make good use of airlines. To cope with borderless competition in this global age, most shippers using air logistics want to receive diverse information including just-in-time cargo delivery and dangerous situation as well as convenience and speed in job handling. Nevertheless, most domestic forwarders, who perform many kinds of important businesses for air logistics, mainly put emphasis on demanding information from overseas partners through their business agreements, that is, focusing on horizontal integration, instead of sharing information or improving job performance among air logistics participants. As a result, it is almost impossible to satisfy the needs of shippers. Airline users want to remove the uncertainties over their cargo movement. And in time of emergency, they want to take immediate measures through speedy information sharing and decision-making. In order to satisfy shipper's needs, all the organizations participating in the air logistics supply chain-cargo senders, cargo receivers, forwarders, transporters, licensed customs brokers, airlines as well as foreign partners-have to set up a vertical cooperation system. For effective air logistics SCM, it is very important to remove overlapping jobs, strengthen the efficiency of job handling, and provide online monitoring on cargo information in order to support decision-making. To this end, this paper has applied the concept of RTE (Real Time Enterprise), a new business management system, which tries to maximize competitiveness by removing many hindrance factors on an ongoing basis in managing and fulfilling core business processes based on up-to-the-minute information. In order to realize RTE-based information system for air logistics SCM, this paper has analyzed the information required by business process and by air logistics participant, and suggested the method for information sharing, point of time for information input and output, and its means.

  • PDF

The factors that influence postoperative stability of the dental implants in posterior edentulous maxilla

  • Kim, Yun-Ho;Choi, Na-Rae;Kim, Yong-Deok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.2.1-2.6
    • /
    • 2017
  • Background: All clinicians are aware of the difficulty of installing a dental implant in posterior maxilla because of proximate position of maxillary sinus, insufficient bone width, and lower bone density. This study is to examine which factors will make the implantation in the posterior maxilla more difficult, and which factors will affect the postoperative implant stability in this region. Methods: Five hundred seventy-three fixtures on the maxilla posterior were included for this study from all the patients who underwent an installation of the dental implant fixture from January 2010 to December 2014 at the Department of Oral and Maxillofacial Surgery in Pusan National University Dental Hospital (Yangsan, Korea). The postoperative implant stability quotient (ISQ) value, fixture diameter and length, presence of either bone graft or sinus lift, and graft material were included in the reviewed factors. The width and height of the bone bed was assessed via preoperative cone beam CT image analysis. The postoperative ISQ value was taken just before loading by using the OsstellTM $mentor^{(R)}$ (Integration Diagnostics AB, Gothenburg, Sweden). The t test and ANOVA methods were used in the statistical analysis of the data. Results: Mean ISQ of all the included data was 79.22. Higher initial bone height, larger fixture diameter, and longer fixture length were factors that influence the implant stability on the posterior edentulous maxilla. On the other hand, the initial bone width, bone graft and sinus elevation procedure, graft material, and approach method for sinus elevation showed no significant impact associated with the implant stability on the posterior edentulous maxilla. Conclusions: It is recommended to install the fixtures accurately in a larger diameter and longer length by performing bone graft and sinus elevation.

Pre-service Elementary Teachers' Perceptions of the Technological, Pedagogical and Content Knowledge (TPACK) (테크놀로지 교수내용 지식 (TPACK) 에 대한 예비초등교사의 인식)

  • Kwon, Hyuk-il
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.339-345
    • /
    • 2020
  • This study intended to analyze pre-service elementary teachers' perceptions of teacher knowledge based on the Technological, Pedagogical, and Content Knowledge (TPACK) framework. Seventy-four pre-service elementary teachers who were enrolled at an University of Education located in mid-continent of Korea participated in a survey. Results of the survey was analyzed using Importance-Performance Analysis (IPA) method. It was found that perception of importance was significantly higher than that of performance at all seven domains of the TPACK. IPA matrix extracted from the survey indicates that Technological Content Knowledge (TCK), Technological Pedagogical Knowledge (TPK), and TPACK which are related to technology especially need to develop. Results of this study also show the necessity to support pre-service teachers so that they can have opportunities to develop and use technology-related knowledge and skills. This study especially implies that technological knowledge needs to be integrated with content and pedagogical knowledge when implementing curriculum and educational programs for pre-servie elementary teachers.

Model-Based Architecture Design of the Range Safety Process for Live Fire Test with Enhanced Safety (실사격 시험 프로세스의 안전성 강화를 위한 MBSE 기반 아키텍처 연구)

  • Ye, Sung Hyuck;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • In weapon systems development, live fire tests have been frequently adopted to evaluate the performance of the systems under development. Therefore, it is necessary to ensure safety in the test ranges where the live fire tests can cause serious hazards. During the tests, a special care must be taken to protect the test and evaluation (T&E) personnel and also test assets from potential danger and hazards. Thus, the development and management of the range safety process is quite important in the tests of guided missiles and artillery considering the explosive power of the destruction. Note also that with a newly evolving era of weapon systems such as laser, EMP and non-lethal weapons, the test procedure for such systems is very complex. Therefore, keeping the safety level in the test ranges is getting more difficult due to the increased unpredictability for unknown hazards. The objective of this paper is to study on how to enhance the safety in the test ranges. To do so, an approach is proposed based on model-based systems engineering (MBSE). Specifically, a functional architecture is derived utilizing the MBSE method for the design of the range safety process under the condition that the derived architecture must satisfy both the complex test situation and the safety requirements. The architecture developed in the paper has also been investigated by simulation using a computer-aided systems engineering tool. The systematic application of this study in weapon live tests is expected to reduce unexpected hazards and test design time. Our approach is intended to be a trial to get closer to the recent theme in T&E community, "Testing at the speed of stakeholder's need and rapid requirement for rapid acquisition."

Seismic Fragility Analysis of Base Isolated NPP Piping Systems (지진격리된 원전배관의 지진취약도 분석)

  • Jeon, Bub Gyu;Choi, Hyoung Suk;Hahm, Dae Gi;Kim, Nam Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2015
  • Base isolation is considered as a seismic protective system in the design of next generation Nuclear Power Plants (NPPs). If seismic isolation devices are installed in nuclear power plants then the safety under a seismic load of the power plant may be improved. However, with respect to some equipment, seismic risk may increase because displacement may become greater than before the installation of a seismic isolation device. Therefore, it is estimated to be necessary to select equipment in which the seismic risk increases due to an increase in the displacement by the installation of a seismic isolation device, and to perform research on the seismic performance of each piece of equipment. In this study, modified NRC-BNL benchmark models were used for seismic analysis. The numerical models include representations of isolation devices. In order to validate the numerical piping system model and to define the failure mode, a quasi-static loading test was conducted on the piping components before the analysis procedures. The fragility analysis was performed by using the results of the inelastic seismic response analysis. Inelastic seismic response analysis was carried out by using the shell finite element model of a piping system considering internal pressure. The implicit method was used for the direct integration time history analysis. In addition, the collapse load point was used for the failure mode for the fragility analysis.

Tillage boundary detection based on RGB imagery classification for an autonomous tractor

  • Kim, Gookhwan;Seo, Dasom;Kim, Kyoung-Chul;Hong, Youngki;Lee, Meonghun;Lee, Siyoung;Kim, Hyunjong;Ryu, Hee-Seok;Kim, Yong-Joo;Chung, Sun-Ok;Lee, Dae-Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.205-217
    • /
    • 2020
  • In this study, a deep learning-based tillage boundary detection method for autonomous tillage by a tractor was developed, which consisted of image cropping, object classification, area segmentation, and boundary detection methods. Full HD (1920 × 1080) images were obtained using a RGB camera installed on the hood of a tractor and were cropped to 112 × 112 size images to generate a dataset for training the classification model. The classification model was constructed based on convolutional neural networks, and the path boundary was detected using a probability map, which was generated by the integration of softmax outputs. The results show that the F1-score of the classification was approximately 0.91, and it had a similar performance as the deep learning-based classification task in the agriculture field. The path boundary was determined with edge detection and the Hough transform, and it was compared to the actual path boundary. The average lateral error was approximately 11.4 cm, and the average angle error was approximately 8.9°. The proposed technique can perform as well as other approaches; however, it only needs low cost memory to execute the process unlike other deep learning-based approaches. It is possible that an autonomous farm robot can be easily developed with this proposed technique using a simple hardware configuration.

A study on the Method of the Keyword Spotting Recognition in the Continuous speech using Neural Network (신경 회로망을 이용한 연속 음성에서의 keyword spotting 인식 방식에 관한 연구)

  • Yang, Jin-Woo;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.43-49
    • /
    • 1996
  • This research proposes a system for speaker independent Korean continuous speech recognition with 247 DDD area names using keyword spotting technique. The applied recognition algorithm is the Dynamic Programming Neural Network(DPNN) based on the integration of DP and multi-layer perceptron as model that solves time axis distortion and spectral pattern variation in the speech. To improve performance, we classify word model into keyword model and non-keyword model. We make an experiment on postprocessing procedure for the evaluation of system performance. Experiment results are as follows. The recognition rate of the isolated word is 93.45% in speaker dependent case. The recognition rate of the isolated word is 84.05% in speaker independent case. The recognition rate of simple dialogic sentence in keyword spotting experiment is 77.34% as speaker dependent, and 70.63% as speaker independent.

  • PDF

Bending of steel fibers on partly supported elastic foundation

  • Hu, Xiao Dong;Day, Robert;Dux, Peter
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.657-668
    • /
    • 2001
  • Fiber reinforced cementitious composites are nowadays widely applied in civil engineering. The postcracking performance of this material depends on the interaction between a steel fiber, which is obliquely across a crack, and its surrounding matrix. While the partly debonded steel fiber is subjected to pulling out from the matrix and simultaneously subjected to transverse force, it may be modelled as a Bernoulli-Euler beam partly supported on an elastic foundation with non-linearly varying modulus. The fiber bridging the crack may be cut into two parts to simplify the problem (Leung and Li 1992). To obtain the transverse displacement at the cut end of the fiber (Fig. 1), it is convenient to directly solve the corresponding differential equation. At the first glance, it is a classical beam on foundation problem. However, the differential equation is not analytically solvable due to the non-linear distribution of the foundation stiffness. Moreover, since the second order deformation effect is included, the boundary conditions become complex and hence conventional numerical tools such as the spline or difference methods may not be sufficient. In this study, moment equilibrium is the basis for formulation of the fundamental differential equation for the beam (Timoshenko 1956). For the cantilever part of the beam, direct integration is performed. For the non-linearly supported part, a transformation is carried out to reduce the higher order differential equation into one order simultaneous equations. The Runge-Kutta technique is employed for the solution within the boundary domain. Finally, multi-dimensional optimization approaches are carefully tested and applied to find the boundary values that are of interest. The numerical solution procedure is demonstrated to be stable and convergent.

3-D Visualization of Reservoir Characteristics through GOCAD (GOCAD를 이용한 저류층 속성정보의 3차원 시각화 연구)

  • Gwak Sang-Hwan;Lee Doo Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.80-83
    • /
    • 2001
  • Four seismic reflection horizons in 3-D seismic data, coherence derived from the seismic data, and 38 well logs from the Boonsville Gas Filed in Texas were tried to be integrated and visualized in 3 dimensions. Time surface was constructed from pick times of the reflection horizons. Average velocities to each horizon at 38 well locations were calculated based on depth markers from the well logs and time picks from the 3-D seismic data. The time surface was transformed to depth surface through velocity interpolation. Coherence was calculated on the 3-D seismic data by semblance method. Spatial distribution of the coherence is captured easily in 3-D visualization. Comparing to a time-slice of seismic data, distinctive stratigraphic features could be correctly recognized on the 3-D visualization.

  • PDF