• Title/Summary/Keyword: Integrating Sphere

Search Result 68, Processing Time 0.022 seconds

Study on Color and Oxidation Thickness for Titanium Spectacle Frames Colored by Anodization (양극산화방법으로 착색한 티타늄 안경테의 산화막 두께에 따른 색상 연구)

  • Hyun, Seung-Cheol;Jin, Moon-Seog;Kim, Yong-Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.4
    • /
    • pp.33-37
    • /
    • 2009
  • Purpose: To examine the coloring condition of titanium spectacle frames with various colors by using anodization method. Methods: We made an anodization coater. Platinum plate with $3{\times}3cm^2$ was used for a cathode and titanium spectacle frame specimens was mounted on an anode in an electrolyte. An electric source device were designed to supply steady state current. The color of the coated spectacle frame specimens were measured by a spectrophotometer equipped with an integrating sphere. We use CIE $L^*a^*b$ color system as chromaticity coordinates. Results: The thickness of $TiO_2$ of titanium spectacle frame specimens was varied as controlling current flow time for electrodes. The specimens with various kinds of color as a walnut, a yellow brown, a navy blue, a blue, a light blue, a mung bean, a yellowish green, a light purple, a purple, a flower pink, a bluish green, an emerald, and a green color etc. were obtained. The values of CIE $L^*a^*b^*$ for these specimens were measured and analyzed to be changed clockwise in chromaticity coordinates as the thickness of $TiO_2$ increases. Conclusions: We identified the coloring mechanism by anodization method in titanium spectacle frame specimens.

  • PDF

Comparative Study of Color Correspondence According to Size of Vita CAD/CAM Ceramic Block Using ShadeEye-Ncc$^{(R)}$ System (ShadeEye$^{(R)}$ NCC system을 이용한 Vita CAD/CAM Ceramic Block의 크기에 따른 색조 일치성 비교연구)

  • Kim, Jae-Hong;Kim, Hae-Young;Kim, Woong-Chul;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.33 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Purpose: The purpose of this study was to compare color correspondence of different sizes of Vita Mark II$^{(R)}$ and TriLuxe$^{(R)}$ Feldspar blocks. Methods: The three commercially available shades(1M2, 2M2, 3M2) of Mark II & TriLuxe blocks for the CEREC$^{(R)}$ CAD/CAM system were examined. For each of three colors, three different sizes were tested, 5 blocks each. The measurements were made using a spectrophotometer equipped with an integrating sphere using the CIE $L^*$, $a^*$, $b^*$ colorimetric system. Results: The $L^*$, $a^*$, $b^*$ value of Vita Mark II$^{(R)}$ ceramic block showed significantly higher than TriLuxe$^{(R)}$ ceramic block(p<0.05). In comparing the Vita Mark II$^{(R)}$ specimen of the three different shade, color differences between materials(${\Delta}E^*$) showed the lowest value of 2.09, and the highest was 2.24. ${\Delta}E^*$ values of the materials of Vita Mark II$^{(R)}$ were higher than 2. As the size of ceramic block differed, the color correspondence of Vita Mark II$^{(R)}$ showed statistically significant difference but, this result is clinically acceptable. Conclusion: All the different sizes of the different shades of Vita TriLuxe$^{(R)}$ blocks for the CEREC$^{(R)}$ system showed the high degree of color correspondence necessary in industrially prefabricated CAD/CAM blocks. The results of the present study suggested that it would be necessary to establish the reproducible and constant color specification system for an esthetic restoration.

Fabrication of Microwire Arrays for Enhanced Light Trapping Efficiency Using Deep Reactive Ion Etching

  • Hwang, In-Chan;Seo, Gwan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.454-454
    • /
    • 2014
  • Silicon microwire array is one of the promising platforms as a means for developing highly efficient solar cells thanks to the enhanced light trapping efficiency. Among the various fabrication methods of microstructures, deep reactive ion etching (DRIE) process has been extensively used in fabrication of high aspect ratio microwire arrays. In this presentation, we show precisely controlled Si microwire arrays by tuning the DRIE process conditions. A periodic microdisk arrays were patterned on 4-inch Si wafer (p-type, $1{\sim}10{\Omega}cm$) using photolithography. After developing the pattern, 150-nm-thick Al was deposited and lifted-off to leave Al microdisk arrays on the starting Si wafer. Periodic Al microdisk arrays (diameter of $2{\mu}m$ and periodic distance of $2{\mu}m$) were used as an etch mask. A DRIE process (Tegal 200) is used for anisotropic deep silicon etching at room temperature. During the process, $SF_6$ and $C_4F_8$ gases were used for the etching and surface passivation, respectively. The length and shape of microwire arrays were controlled by etching time and $SF_6/C_4F_8$ ratio. By adjusting $SF_6/C_4F_8$ gas ratio, the shape of Si microwire can be controlled, resulting in the formation of tapered or vertical microwires. After DRIE process, the residual polymer and etching damage on the surface of the microwires were removed using piranha solution ($H_2SO_4:H_2O_2=4:1$) followed by thermal oxidation ($900^{\circ}C$, 40 min). The oxide layer formed through the thermal oxidation was etched by diluted hydrofluoric acid (1 wt% HF). The surface morphology of a Si microwire arrays was characterized by field-emission scanning electron microscopy (FE-SEM, Hitachi S-4800). Optical reflection measurements were performed over 300~1100 nm wavelengths using a UV-Vis/NIR spectrophotometer (Cary 5000, Agilent) in which a 60 mm integrating sphere (Labsphere) is equipped to account for total light (diffuse and specular) reflected from the samples. The total reflection by the microwire arrays sample was reduced from 20 % to 10 % of the incident light over the visible region when the length of the microwire was increased from $10{\mu}m$ to $30{\mu}m$.

  • PDF

Evaluation of the KASI Detector Performance Test System Using an Andor iKon M CCD Camera

  • Yu, Young Sam;Kim, Jinsol;Park, Chan;Jeong, Woong-Seob;Kim, Minjin;Choi, Seonghwan;Park, Sung-Joon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.201-210
    • /
    • 2018
  • The characterization of detectors installed in space- and ground-based instruments is important to evaluate the system performance. We report the development of a detector performance test system for astronomical applications using the Andor iKon M CCD camera. The performance test system consists of a light source, monochromator, integrating sphere, and power meters. We adopted the Czerny-Tuner monochromator with three ruled gratings and one mirror, which covers a spectral range of 200-9,000 nm with a spectral resolution of ~1 nm in the visible region. Various detector characteristics, such as the quantum efficiency, sensitivity, and noise, can be measured in wide wavelength ranges from the visible to mid-infrared regions. We evaluated the Korea Astronomy and Space Science Institute (KASI) detector performance test system by using the performance verification of the Andor iKon-M CCD camera. The test procedure includes measurements of the conversion gain ($2.86e^-/ADU$), full well capacity ($130K\;e^-$), nonlinearity, and pixel defects. We also estimated the read noise, dark current, and quantum efficiency as a function of the temperature. The lowest measured read noise is $12e^-$. The dark current at 223 K was determined to be $7e^-/s/pix$ and its doubling temperature is $5.3^{\circ}C{\pm}0.2^{\circ}C$ at an activation energy of 0.6 eV. The maximum quantum efficiency at 223 K was estimated to be $93%{\pm}2%$. We proved that the quantum efficiency is sensitive to the operating temperature. It varies up to 5 % in the visible region, while the variation increases to 30 % in the near-infrared region. Based on the comparison of our results with the test report by the vendor, we conclude that our performance test results are consistent with those from the vendor considering the test environment. We also confirmed that the KASI detector performance test system is reliable and our measurement method and analysis are accurate.

Proposal and Verification of Image Sensor Non-uniformity Correction Algorithm (영상센서 픽셀 불균일 보정 알고리즘 개발 및 시험)

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.29-33
    • /
    • 2007
  • All pixels of image sensor do not react uniformly even if the light of same radiance enters into the camera. This non-uniformity comes from the sensor pixel non-uniformity and non-uniformity induced by the changing transmission of the telescope over the field. The first contribution to the non-uniformity has high spatial frequency nature and has an influence on the result and quality of the data compression. The second source of non-uniformity has low frequency nature and has no influence of the compression result. As the contribution resulting from the sensor PRNU(Photo Response Non-Uniformity) is corrected inside the camera electronics, the effect of the remaining non-uniformity to the compression result will be negligible. The non-uniformity correction result shall have big difference according to the sensor modeling and the calculation method to get correction coefficient. Usually, the sensor can be modeled with one dimensional coefficients which are a gain and a offset for each pixel. Only two measurements are necessary theoretically to get coefficients. However, these are not the optimized value over the whole illumination level. This paper proposes the algorithm to calculate the optimized non-uniformity correction coefficients over whole illumination radiance. The proposed algorithm uses several measurements and the least square method to get the optimum coefficients. The proposed algorithm is verified using the own camera electronics including sensor, electrical test equipment and optical test equipment such as the integrating sphere.

Functional Characterization of the Extracts from Nipa Palm, Molokhia, and Finger Root for Cosmetic Ingredients (니파팜, 몰로키아, 핑거루트 추출물의 화장품 소재로서의 기능적 특성 분석)

  • Jun, Yue Jin;Lee, Sohyun;Heo, Sojeong;Jin, Byung Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.821-829
    • /
    • 2019
  • This study was conducted to evaluate the applicability of the extracts from nipa palm, molokhia, and finger root in functional cosmetics as a natural active ingredient. The extracts were obtained through the processes of heating under reflux with ethanol, filtration, concentration, and freeze-drying. UV absorption and blocking effects of the extracts were examined by using the UV-vis spectrophotometer equipped with an integrating sphere. Antioxidant activity and its stability between the extracts were compared using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Also, total polyphenol content in the extracts was determined quantitatively using the Folin-Ciocalteu reagent, with gallic acid as the standard. Antibacterial activity of the extracts was investigated by the disc diffusion test against Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative). Finally, collagenase inhibitor assay was performed to examine the anti-wrinkle effect of the extracts. From the results of this study, the extract of nipa palm showed the potential for use in cosmetics as an antioxidant and anti-wrinkle agent, and the extract of finger root as a sunscreen and antibacterial agent.

Performance Evaluation of Mid-IR Spectrometers by Using a Mid-IR Tunable Optical Parametric Oscillator (중적외선 광 파라메트릭 발진기를 이용한 중적외선 분광기 성능 평가)

  • Nam, Hee Jin;Kim, Seung Kwan;Bae, In-Ho;Choi, Young-Jun;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.4
    • /
    • pp.154-158
    • /
    • 2019
  • We have used a mid-IR (mid-infrared) continuous-wave (cw) optical parametric oscillator (OPO), developed previously and described in Ref. 12, to build a performance-evaluation setup for a mid-IR spectrometer. The used CW OPO had a wavelength tuning range of $ 2.5-3.6{\mu}m$ using a pump laser with a wavelength of 1064 nm and a fan-out MgO-doped periodically poled lithium niobate (MgO:PPLN) nonlinear crystal in a concentric cavity design. The OPO was combined with a near-IR integrating sphere and a Fourier-transform IR optical spectrum analyzer to build a performance-evaluation setup for mid-IR spectrometers. We applied this performance-evaluation setup to evaluating a mid-IR spectrometer developed domestically, and demonstrated the capability of evaluating the performance, such as spectral resolution, signal-to-noise ratio, spectral stray light, and so on, based on this setup.

p-Type Activation of AlGaN-based UV-C Light-Emitting Diodes by Hydrogen Removal using Electrochemical Potentiostatic Activation (전기화학적 정전위 활성화를 사용한 수소 제거에 의한 AlGaN기반의 UV-C 발광 다이오드의 p-형 활성화)

  • Lee, Koh Eun;Choi, Rak Jun;Kumar, Chandra Mohan Manoj;Kang, Hyunwoong;Cho, Jaehee;Lee, June Key
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.85-89
    • /
    • 2021
  • AlGaN-based UV-C light-emitting diodes (LEDs) were applied for p-type activation by electrochemical potentiostatic activation (EPA). The p-type activation efficiency was increased by removing hydrogen atoms through EPA treatment using a neutral Mg-H complex that causes high resistance and low conductivity. A neutral Mg-H complex is decomposed into Mg- and H+ depending on the key parameters of solution, voltage, and time. The improved hole carrier concentration was confirmed by secondary ion mass spectroscopy (SIMS) analysis. This mechanism eventually improved the internal quantum efficiency (IQE), the light extraction efficiency, the leakage current value in the reverse current region, and junction temperature, resulting in better UV-C LED lifetime. For systematic analysis, SIMS, Etamax IQE system, integrating sphere, and current-voltage measurement system were used, and the results were compared with the existing N2-annealing method.