• Title/Summary/Keyword: Integrated type

Search Result 1,948, Processing Time 0.041 seconds

Image Quality Evaluation of Medical Image Enhancement Parameters in the Digital Radiography System (디지털 방사선시스템에서 영상증강 파라미터의 영상특성 평가)

  • Kim, Chang-Soo;Kang, Se-Sik;Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.329-335
    • /
    • 2010
  • Digital imaging detectors can use a variety of detection materials to convert X-ray radiation either to light or directly to electron charge. Many detectors such as amorphous silicon flat panels, CCDs, and CMOS photodiode arrays incorporate a scintillator screen to convert x-ray to light. The digital radiography systems based on semiconductor detectors, commonly referred to as flat panel detectors, are gaining popularity in the clinical & hospital. The X-ray detectors are described between a-Silicon based indirect type and a-Selenium based direct type. The DRS of detectors is used to convert the x-ray to electron hole pairs. Image processing is described by specific image features: Latitude compression, Contrast enhancement, Edge enhancement, Look up table, Noise suppression. The image features are tuned independently. The final enhancement result is a combination of all image features. The parameters are altered by using specific image features in the different several hospitals. The image in a radiological report consists of two image evaluation processes: Clinical image parameters and MTF is a descriptor of the spatial resolution of a digital imaging system. We used the edge test phantom and exposure procedure described in the IEC 61267 to obtain an edge spread function from which the MTF is calculated. We can compare image in the processing parameters to change between original and processed image data. The angle of the edge with respect to the axes of detector was varied in order to determine the MTF as a function of direction. Each MTF is integrated within the spatial resolution interval of 1.35-11.70 cycles/mm at the 50% MTF point. Each image enhancement parameters consists of edge, frequency, contrast, LUT, noise, sensitometry curve, threshold level, windows. The digital device is also shown to have good uniformity of MTF and image parameters across its modality. The measurements reported here represent a comprehensive evaluation of digital radiography system designed for use in the DRS. The results indicate that the parameter enables very good image quality in the digital radiography. Of course, the quality of image from a parameter is determined by other digital devices in addition to the proper clinical image.

Variations of Ozone and PM10 Concentrations and Meteorological Conditions according to Airflow Patterns of their High Concentration Episodes on Jeju Island (제주지역 오존 및 미세먼지 고농도일의 기류패턴에 따른 농도변화와 기상조건 분석)

  • Han, Seung-Bum;Song, Sang-Keun;Choi, Yu-Na
    • Journal of Environmental Science International
    • /
    • v.26 no.2
    • /
    • pp.183-200
    • /
    • 2017
  • The classification of airflow patterns during high ozone ($O_3$) and $PM_{10}$ episodes on Jeju Island in recent years (2009-2015), as well as their correlation with meteorological conditions according to classified airflow patterns were investigated in this study. The airflow patterns for $O_3$ and $PM_{10}$ were classified into four types (Types A-D) and three types (Types E-G), respectively, using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and synoptic weather charts. Type A was the most dominant airflow pattern for $O_3$ episodes, being characterized by the transport of airflows from urban and industrial areas in China with the highest frequency (about 69%, with a mean of 67 ppb). With regard to the $PM_{10}$ episodes, Type E was the most dominant airflow pattern, and was mostly associated with long distance transport from Asian dust source regions along northwesterly winds, having the highest frequency (about 92%, with a mean of $136{\mu}g/m^3$). The variations in the concentration of $O_3$ and $PM_{10}$ during the study period were clarified in correlation with two pollutant and meteorological variables; for example, the high (low) $O_3$ and $PM_{10}$ concentrations with high (low) air temperature and/or wind speed and vice versa for precipitation. The contribution of long-range transport to the observed $PM_{10}$ levels in urban sites for different airflow patterns (Types E-F), if estimated in comparison to the data from the Gosan background site, was found to account for approximately 87-93% (on average) of its input. The overall results of the present study suggest that the variations in $O_3$ and $PM_{10}$ concentrations on Jeju Island are mainly influenced by the transport effect, as well as the contribution of local emissions.

An Experimental Study on Flow Distributor Performance with Single-Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 유동분사기 성능에 대한 실험연구)

  • Ryu, Sung Uk;Bae, Hwang;Yang, Jin Hwa;Jeon, Byong Guk;Yun, Eun Koo;Kim, Jaemin;Bang, Yoon Gon;Kim, Myung Joon;Yi, Sung-Jae;Park, Hyun-Sik
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.124-132
    • /
    • 2016
  • In order to estimate the effect of flow distributors connected to an upper nozzle of CMT(Core Makeup Tank) on the thermal-hydraulic characteristics in the tank, a simplified 2 inch Small Break Loss of Coolant Accident(SBLOCA) was simulated by skipping the decay power and Passive Residual Heat Removal System(PRHRS) actuation. The CMT is a part of safety injection systems in the SMART (System Integrated Modular Advanced Reactor). Each test was performed with reliable boundary conditions. It means that the pressure distribution is provided with repeatable and reproducible behavior during SBLOCA simulations. The maximum flow rates were achieved at around 350 seconds after the initial opening of the isolation valve installed in CMT. After a short period of decreased flow rate, it attained a steady injection flow rate after about 1,250 seconds. This unstable injection period of the CMT coolant is due to the condensation of steam injected into the upper part of CMT. The steady injection flow rate was about 8.4% higher with B-type distributor than that with A-type distributor. The gravity injection during hot condition tests were in good agreement with that during cold condition tests except for the early stages.

A Study on the Forming Technology of Multi-stage Aircell Filling Valves (다단 에어셀 충진 밸브성형기술에 관한 연구)

  • Kim, Mi-Suk;Park, Dong-Sam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.57-64
    • /
    • 2017
  • Today, due to the environmental regulations regarding air pollution in the EU, the use of EPS (Styrofoam) as the cushioning material in the packaging industry is decreasing. In effect, air cushioning based cushioning materials are rapidly expanding into the market and replacing EPS, due to their excellent buffering ability and environmental friendliness. This is a new selective filling type air filling material manufacturing technology that affords improvements in the amount of raw materials required, its processing and its aesthetic appearance compared to the conventional air filling cushioning materials. In this study, a multi-stage air cell filling valve molding technology is developed based on selective filling technology, which allows packages to be selectively filled in various forms by applying valve forming structure technology. This multi-stage air cell filling valve molding technology is a technique in which a plurality of injection ports are formed by laminating three layers of films, viz. a first injection film, a valve film, and a second injection film having valve ends. In the conventional technology, a separate external air injection path for injecting air into a plurality of connected air bags is needed. However, in the proposed system, an external air injection path is formed inside the air bag, Due to the lack of need for an injection furnace, the raw material and process are reduced and air is injected and then discharged, while the air bag is reduced in length to 63 ~ 66% of its normal value. The outer surface of the outer air injection path is integrated inside by maintaining the original length of the cross section, while the unnecessary folded air is injected into the interior of the air bag, This smart air filling type cushioning material manufacturing technology constitutes a big improvement over the existing technologies.

Mechanism of isoproterenol-induced relaxation of the rat uterine smooth muscle: Activation of 4-aminopyridine-sensitive K+ channels (Isoproterenol에 의한 자궁근 이완의 기전 : 4-aminopyridine-sensitive K+ 채널의 개방)

  • Kim, Ki-ha;Lee, Young-jae;Cho, Myung-haing;Lee, Mun-han;Chun, Boe-gwon;Ryu, Pan-dong
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • Activation of $K^+$ channels induces relaxation of smooth muscles by reducing electrical excitability and cytosolic free $Ca^{2+}$ level. ${\beta}$-adrenergic agonist isoproterenol is known to induce relaxation of the uterine smooth muscle by membrane hyperpolarization and $K^+$ efflux. Recently it is suggested that the activity of $Ca^{2+}$-activated $K^+$ channel was increased by isoproterenol in the uterine myocytes isolated from myometrium of the pregnant rat. However, the type of $K^+$ channel mediating the relaxant effect of isopreterenol in the tissue level has not yet studied. In this work, we investigated the type of $K^+$ channels involved in the isoproterenol-induced relaxation of uterine smooth muscle by measuring the integrated insometric tension of the estrogen-treated isolated nonpregnant rat uterus. Contraction of uterine tissue was induced by oxytocin (0.2nM, 2~3 contractions/min) or high KCl(20~80mM). The result are as follows : 1. Isoproterenol($10^{-10}{\sim}10^{-4}M$) inhibited oxytocin-induced contraction of isolated rat uterus($EC_{50}=1.17{\times}10^{-10}M$). 2. Isoproterenol($10^{-10}{\sim}10^{-4}M$) effectively inhibited uterine contraction induced by low KCl(20~40mM) but little those induced by high KCl(60~80mM). 3. Relaxant effect of isoproterenol($10^{-10}{\sim}10^{-4}M$) on 0.2nM oxytocin-induced contraction was effectively reduced by 4-aminopyridine(3, 10mM) but little by TEA(10~30mM), $Ba^{2+}$($1{\sim}30{\mu}M$) and glibenclamide($100{\mu}M$). Our data suggest that the relaxant effect of isoproterenol is mediated by the $K^+$ channel(s) which can be blocked by 4-aminopyridine.

  • PDF

Development of Integrated Wireless Sensor Network Device with Mold for Measurement of Concrete Temperature (콘크리트 온도 측정을 위한 거푸집 일체형 무선센서네트워크 장치 개발)

  • Lee, Sung Bok;Park, Seong Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.129-136
    • /
    • 2012
  • Temperature of fresh concrete can be effectively used to predict the strength of concrete being cured and make an informed decision for stripping the molds. A hygrothermograph and thermo-couple sensors that require an extensive wiring have been applied to measure a temperature of concrete at the early stage of the curing process on site. However, these methods have limits to provide the temperature data in real time due to harsh working environment including frequent cutting of wires. Therefore, this study is aiming at developing a device based on wireless sensor network to measure the temperature of concrete being cured in formwork. The result showed that the wireless sensor with probe type thermistor which is developed had the same temperature data compared to the existed wire type thermistor, and we confirmed the temperature history of concrete in real time for 28 days throughout the gateway by wireless network that collects the temperature data measured from specimens in laboratory. Also, the network device for transmission can be easily separated from the probe sensor part and reused consistently. If the wireless sensor network device developed uses in the field, the temperature management of concrete will be systematically conducted from at the early stage of the curing, and especially be effective for cold weather concrete construction. In addition, it will contribute to the establishment of advanced quality control system for concrete and productivity of supervisors on site will be increased in the future.

Sedimentary type Non-Metallic Mineral Potential Analysis using GIS and Weight of Evidence Model in the Gangreung Area (지리정보시스템(GIS) 및 Weight of Evidence 기법을 이용한 강릉지역의 퇴적기원의 비금속 광상부존가능성 분석)

  • Lee Sa-Ro;Oh Hyun-Joo;Min Kyung-Duck
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.129-150
    • /
    • 2006
  • Mineral potential mapping is an important procedure in mineral resource assessment. The purpose of this study is to analyze mineral potential using weight of evidence model and a Geographic Information System (GIS) environment to identify areas that have not been subjected to the same degree of exploration. For this, a variety of spatial geological data were compiled, evaluated and integrated to produce a map of potential mineral in the Gangreung area, Korea. for this, a spatial database considering mineral deposit, topographic, geologic, geophysical and geochemical data was constructed for the study area using a GIS. The used mineral deposits were non-metallic(Kaolin, Porcelainstone, Silicastone, Mica, Nephrite, Limestone and Pyrophyllite) deposits of sedimentary type. The factors relating to mineral deposits were the geological data such as lithology and fault structure, geochemical data, including the abundance of Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Si, Sr, V, Zn, $Cl^-,\;F^-,\;{PO_4}^{3-},\;{NO_2}^-,\;{NO_3}^-,\;SO_{42-}$, Eh, PH and conductivity and geophysical data, including the Bouguer and magnetic anomalies. These factors were used with weight of evidence model to analyze mineral potential. Probability models using the weight of evidence were applied to extract the relationship between mineral deposits and related factors, and the ratio were calculated. Then the potential indices were calculated by summation of the likelihood ratio and mineral potential maps were constructed from Geographic Information System (GIS). The mineral potential maps were then verified by comparison with the known mineral deposit areas. The result showed the 85.66% in prediction accuracy.

  • PDF

A dose monitoring system for dental radiography

  • Lee, Chena;Lee, Sam-Sun;Kim, Jo-Eun;Symkhampha, Khanthaly;Lee, Woo-Jin;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Choi, Soon-Chul;Yeom, Heon-Young
    • Imaging Science in Dentistry
    • /
    • v.46 no.2
    • /
    • pp.103-108
    • /
    • 2016
  • Purpose: The current study investigates the feasibility of a platform for a nationwide dose monitoring system for dental radiography. The essential elements for an unerring system are also assessed. Materials and Methods: An intraoral radiographic machine with 14 X-ray generators and five sensors, 45 panoramic radiographic machines, and 23 cone-beam computed tomography (CBCT) models used in Korean dental clinics were surveyed to investigate the type of dose report. A main server for storing the dose data from each radiographic machine was prepared. The dose report transfer pathways from the radiographic machine to the main sever were constructed. An effective dose calculation method was created based on the machine specifications and the exposure parameters of three intraoral radiographic machines, five panoramic radiographic machines, and four CBCTs. A viewing system was developed for both dentists and patients to view the calculated effective dose. Each procedure and the main server were integrated into one system. Results: The dose data from each type of radiographic machine was successfully transferred to the main server and converted into an effective dose. The effective dose stored in the main server is automatically connected to a viewing program for dentist and patient access. Conclusion: A patient radiation dose monitoring system is feasible for dental clinics. Future research in cooperation with clinicians, industry, and radiologists is needed to ensure format convertibility for an efficient dose monitoring system to monitor unexpected radiation dose.

Changes in Body Temperature of Piglets in a Day (자돈의 일중 체온변화에 관한 연구)

  • Yi, One-Hyeon;Jeong, Wang-Yong;Lee, Sang-Cheol;Lee, Sang-Rak
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.91-94
    • /
    • 2012
  • This study was conducted to develop an algorithm for determination of abnormal body temperature in piglets through skin and core temperature database at normal condition. 5 piglets (mean BW : 46 kg) were employed for the experiment. They were adapted in the individual metabolism cage set at $22.5{\pm}2.0^{\circ}C$ of room temperature for 2 weeks before the measurement of body temperature. Ear, neck, head and subcutaneous neck temperature (as core temperature) of piglets were measured for every 1 minute during 30 consecutive days through 1mm k-type thermocouple wire and NI-devices (National Instruments Corporation, Austin, Texas, USA). Body temperature data were accumulated and integrated into the 1 day unit. Change of daily mean skin and core body temperatures in piglets were lowest at around 06:00, highest at around 14:00 and gradually decreased until the day after 06:00. Each skin temperatures were varied with the measuring site and largely depended on the room temperature changes. Established database of skin and core body temperature in piglets through this study can be applied to develop an algorithm for monitoring and determining the abnormal condition of animal by using radio frequency identification.

Production Technology of Titanium by Kroll Process (Kroll법에 의한 타이타늄의 제조기술)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.3-14
    • /
    • 2020
  • Titanium sponge is industrially produced by the Kroll process. In order to understand the importance of the emerging smelting and recycling process, it is necessary to review the conventional production process of titanium. Therefore this paper provides a general overview of the conventional titanium manufacturing system mainly by the Kroll process. The Kroll process can be divided into four sub-processes as follows: (1) Chlorination of raw TiO2 with coke, by the fluidized bed chlorination or molten salt chlorination (2) Magnesium reduction of TiCl4 and vacuum distillation of MgCl2 and Mg by reverse U-type or I-type with reduction-distillation integrated retorts (3) Electrolysis process of MgCl2 by monopolar cells or multipolar cells to electrolyze into chlorine gas and Mg. (4) Crushing and melting process in which sponge titanium is crushed and then melted in a vacuum arc furnace or an electron beam furnace Although the apparatus and procedures have improved over the past 80 years, the Kroll process is the costly and time-consuming batch operation for the reduction of TiCl4 and the separation of MgCl2.