• Title/Summary/Keyword: Integrated modeling system

Search Result 702, Processing Time 0.027 seconds

Design and Implementation of Cable Data Subscriber Network Management System using Object-oriented Modeling (객체지향 모델링을 이용한 케이블 데이터 가입자 망관리 시스템의 설계 및 구현)

  • Yun, Byeong-Soo;Ha, Eun-Ju;Kim, Che-Young
    • The KIPS Transactions:PartC
    • /
    • v.11C no.2
    • /
    • pp.269-276
    • /
    • 2004
  • There exist several types of distributed subscriber networks using Asymmetric Digital Subscriber Line(ADSL), Very high -bit rate Digital subscriber Line(VDSL), and Data Oner Cable Service Interface Specifications(DOCSIS). The efficient and concentrated network management of those several distributed subscribers networks and resources requires the general management information model of network, which has abstract and conceptual managed objects of the heterogeneous networks and its equipment to manage the integrated subscriber network. This paper presents the general Internet subscribers network modeling framework using RM-ODP to manage that network in the form of integrated hierarchy. This paper adopts the object-oriented development methodology with UML and designs and implements the HFC network of DOCSIS as an example of the subscriber network.

A Study of Coal Gasification Process Modeling (석탄가스화 공정 모델링에 관한 연구)

  • Lee, Joong-Won;Kim, Mi-Yeong;Chi, Jun-Hwa;Kim, Si-Moon;Park, Se-Ik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.425-434
    • /
    • 2010
  • Integrated gasification combined cycle (IGCC) is an efficient and environment-friendly power generation system which is capable of burning low-ranked coals and other renewable resources such as biofuels, petcokes and residues. In this study some process modeling on a conceptual entrained flow gasifier was conducted using the ASPEN Plus process simulator. This model is composed of three major steps; initial coal pyrolysis, combustion of volatile components, and gasification of char particles. One of the purposes of this study is to develop an effective and versatile simulation model applicable to numerous configurations of coal gasification systems. Our model does not depend on the hypothesis of chemical equilibrium as it can trace the exact reaction kinetics and incorporate the residence time calculation of solid particles in the reactors. Comparisons with previously reported models and experimental results also showed that the predictions by our model were pretty reasonable in estimating the products and the conditions of gasification processes. Verification of the accuracy of our model was mainly based upon how closely it predicts the syngas composition in the gasifier outlet. Lastly the effects of change oxygen are studied by sensitivity analysis using the developed model.

Model-based Design and Verification of High-lift Control System Using a Performance Analysis Model (성능해석 모델을 활용한 고양력 제어시스템의 모델기반 설계 및 검증)

  • Cho, Hyunjun;Kim, Taeju;Kim, Eunsoo;Kim, Sangbeom;Lee, Joonwon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.49-62
    • /
    • 2022
  • The purpose of this paper was to present a model analysis-based design process and verification results for the high-lift control system of aircraft. For this, we used Matlab/Simulink, one of the most widely-used physical modeling tools. The high-lift control system can be divided into three domains. (i.e., Electronic control domain, Hydraulic actuation domain, and Mechanical power transmission domain) Based on this division, we modeled each of the major domains and sub-components, and integrated them to complete the complicated system model. During the development process, each model block was tuned by referring to the results of pre-test and parts acceptance tests. As a result, the entire performance model and the developed system were completely verified, through unit components and system integrated performance tests. Finally, we summarize the process and results applied to the design process of high-lift control system and present future work.

Shape Optimization of Structural Members Based on Isogeometry Concept (등기하 개념에 기초한 구조부재의 형상 최적화)

  • Lee, Joo-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • This study is concerned with the shape optimization of structural members frequently found in critical area in a structure system, that is, highly stressed zone. Isogeometry analysis is well known to be the very efficient way to integrate the geometric modeling(CAD) and computational analysis(CAE). This can be accomplished by directly using the geometric modeling by NURBS(Non-Uniform Rational Basis Spline). In this study, an efficient computer code adopting the isogeometry concept has been developed for the structural analysis, in which CAD information can be directly used in the finite element modeling. In order to show the validity of the present code, the present results are compared with those by using the commercial package, that is, MSC/NASTRAN. The present isogeometric analysis procedure has been integrated with the optimization procedure to deal with the optimization problem found in the context of structural mechanics. The present system has been successfully applied to the shape optimization of cantilever structure having bracket. From the present study, it can be seen the validity of the present approach and computer codes developed in this study. This paper ends with some discussions about the practical usefulness of the present approach which is based on isogeometry analysis, and extension of the present study.

The Study about Conditions for Stable Engine Startup on Launch Vehicle (발사체 엔진의 안정적인 시동 조건에 대한 연구)

  • Jung, Young-Suk;Lee, Han-Ju;Oh, Seung-Hyub;Park, Jeong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.432-435
    • /
    • 2008
  • Launch vehicle for injecting the satellite into its orbit is composed with propulsion system, guidance and navigation system, telemetry and so on. Among the others, the propulsion system is the most important part, because that is the key factor of failure of launch vehicle. Especially, the most of failures were occurred in time of engine startup. Therefore, the study of the conditions for stable engine startup is needed at the first step of development. The many researches were accomplished for mathematical modeling, stable startup engine and control of liquid propellant rocket engine. But the cavitation problem that can be occurred at an inlet of pump associated with propellant feeding system wasn't considered in these works. In this paper, propulsion system model was integrated with clustered engines and propellant feeding system for the simulations of engine startup. As the results of simulations, the requirements were deduced for the stable engine startup without the cavitation at an inlet of pump.

  • PDF

Configuration System through Vector Space Modeling In I-Commerce (전자상거래에서의 벡터 공간 모델링을 통한 Configuration 시스템)

  • 김세형;조근식
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.149-159
    • /
    • 2001
  • There have been lots of researches for providing a personalized service to a customer using one-to-one marketing and collaborative filtering techniques in E-Commerce. However, there are technical difficulties for providing the recommendation of products far users, which often involve high complexity of computation. In this paper, we have presented an integrated method of classification problem solving method and constraint based configuration techniques. This method can reduce a complexity of computation by classifying a solution domain space that has a higher complexity of composition. Thereafter, we have modeled customers constraints and the components of products to configure a complete system by passing it to constraint processing module in Constraint Satisfaction Problems. Constraint-based configuration uses the constraint propagation using the constraints of buyers and the constraints among PC components to configure a proper product for a customer. We have transformed and applied vector space modeling method in the field of information retrieval to consider a customer satisfaction in addition to the CSP. Finally, we have applied our system to test data fur evaluating a customers satisfaction and performance of the proposed system.

  • PDF

A Study on Applying Information Framework for BIM Based WBS -Focusing on Civil Construction- (BIM기반의 WBS 구축을 위한 정보프레임워크 도입방안 연구 -토목사업의 적용을 중심으로-)

  • Nam, Jeong-Yong;Jo, Chan-Won;Park, So-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.770-777
    • /
    • 2017
  • Building information modeling (BIM) has been receiving attention as an integrated information model instead of CAD since the 2000s. BIM technology was first used in the architectural field and was later introduced to the civil engineering field. However, the government announced a plan for the application of BIM to 20% of all SOC projects from 2020, so the adoption of BIM technology is expected to accelerate. In order to successfully adopt BIM, a systematic structure should be supported for integrated design information and implementation technology. Also, it is important to establish the relationship between information systems because many complicated factors are intertwined in the construction industry. In this study, we propose a framework for constructing integrated information through identifying the information relations for introducing BIM in the civil engineering industry. We applied this framework to a bridge project to confirm its effectiveness. This study can be applied to the integrated management of the construction process and costs by introduction of a work breakdown structure (WBS) to BIM. In addition, this study is expected to contribute to the adoption of BIM in the civil engineering field through the proposal of information system standardization in this field.

Knowledge Modeling and Database Construction for Human Biomonitoring Data (인체 바이오모니터링 지식 모델링 및 데이터베이스 구축)

  • Lee, Jangwoo;Yang, Sehee;Lee, Hunjoo
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.607-617
    • /
    • 2020
  • Human bio-monitoring (HBM) data is a very important resource for tracking total exposure and concentrations of a parent chemical or its metabolites in human biomarkers. However, until now, it was difficult to execute the integration of different types of HBM data due to incompatibility problems caused by gaps in study design, chemical description and coding system between different sources in Korea. In this study, we presented a standardized code system and HBM knowledge model (KM) based on relational database modeling methodology. For this purpose, we used 11 raw datasets collected from the Ministry of Food and Drug Safety (MFDS) between 2006 and 2018. We then constructed the HBM database (DB) using a total of 205,491 concentration-related data points for 18,870 participants and 86 chemicals. In addition, we developed a summary report-type statistical analysis program to verify the inputted HBM datasets. This study will contribute to promoting the sustainable creation and versatile utilization of big-data for HBM results at the MFDS.

Active Vibration Control of Composite Shell Structure using Modal Sensor/Actuator System

  • Kim, Seung-Jo;Hwang, Joon-Seok;Mok, Ji-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.106-117
    • /
    • 2006
  • The active vibration control of composite shell structure has been performed with the optimized sensor/actuator system. For the design of sensor/actuator system, a method based on finite element technique is developed. The nine-node Mindlin shell element has been used for modeling the integrated system of laminated composite shell with PVDF sensor/actuator. The distributed selective modal sensor/actuator system is established to prevent the effect of spillover. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Continuous electrode patterns are discretized according to finite element mesh, and orientation angle is encoded into discrete values using binary string. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator for the first and the second mode vibration control of singly curved cantilevered composite shell structure are designed with the method developed on the finite element method and optimization. For verification, the experimental test of the active vibration control is performed for the composite shell structure. Discrete LQG method is used as a control law.

A system model for reliability assessment of smart structural systems

  • Hassan, Maguid H.M.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.455-468
    • /
    • 2006
  • Smart structural systems are defined as ones that demonstrate the ability to modify their characteristics and/or properties in order to respond favorably to unexpected severe loading conditions. The performance of such a task requires a set of additional components to be integrated within such systems. These components belong to three major categories, sensors, processors and actuators. It is wellknown that all structural systems entail some level of uncertainty, because of their extremely complex nature, lack of complete information, simplifications and modeling. Similarly, sensors, processors and actuators are expected to reflect a similar uncertain behavior. As it is imperative to be able to evaluate the impact of such components on the behavior of the system, it is as important to ensure, or at least evaluate, the reliability of such components. In this paper, a system model for reliability assessment of smart structural systems is outlined. The presented model is considered a necessary first step in the development of a reliability assessment algorithm for smart structural systems. The system model outlines the basic components of the system, in addition to, performance functions and inter-relations among individual components. A fault tree model is developed in order to aggregate the individual underlying component reliabilities into an overall system reliability measure. Identification of appropriate limit states for all underlying components are beyond the scope of this paper. However, it is the objective of this paper to set up the necessary framework for identifying such limit states. A sample model for a three-story single bay smart rigid frame, is developed in order to demonstrate the proposed framework.