• Title/Summary/Keyword: Integrated fault diagnosis

Search Result 66, Processing Time 0.033 seconds

Case-Based Reasoning Using Self-Organization Map Neural Network (자기조직화지도 신경망을 이용한 사례기반추론)

  • Kim, Yong-Su;Yang, Bo-Suk;Kim, Dong-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.832-835
    • /
    • 2002
  • This paper presents a new approach integrated Case-Based Reasoning with Self. Organization Map(SOM) in diagnosis systems. The causes of faults are obtained by case-base trained from SOM. When the vibration problem of rotating machinery occurs, this provides an exact diagnosis method that shows the fault cause of vibration problem. In order to verify the performance of algorithm, we applied it to diagnose the fault cause of the electric motor.

  • PDF

A Study on the Fault Diagnosis in Web-based Virtual Machine (웹기반 가상시계에서의 고장진단에 관한 연구)

  • 서정완;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.430-434
    • /
    • 2001
  • Virtual manufacturing system is integrated computer model that represents the precise and whole structure of manufacturing system and simulates its physical and logical behavior in operation.[1] A virtual machine is computer model that represents a CNC machine tool and one of core elements of virtual manufacturing system. In this paper, it is emphasized that a virtual machine must be web-based system for serving information to all attendants in a real machine tool without the restriction of time or location, and then in the fault diagnosis, one of important modules of a virtual machine, the methods of both using the controller signal and web-based expert system are proposed.

  • PDF

A study on fault diagnosis of marine engine using a neural network with dimension-reduced vibration signals (차원 축소 진동 신호를 이용한 신경망 기반 선박 엔진 고장진단에 관한 연구)

  • Sim, Kichan;Lee, Kangsu;Byun, Sung-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.492-499
    • /
    • 2022
  • This study experimentally investigates the effect of dimensionality reduction of vibration signal on fault diagnosis of a marine engine. By using the principal component analysis, a vibration signal having the dimension of 513 is converted into a low-dimensional signal having the dimension of 1 to 15, and the variation in fault diagnosis accuracy according to the dimensionality change is observed. The vibration signal measured from a full-scale marine generator diesel engine is used, and the contribution of the dimension-reduced signal is quantitatively evaluated using two kinds of variable importance analysis algorithms which are the integrated gradients and the feature permutation methods. As a result of experimental data analysis, the accuracy of the fault diagnosis is shown to improve as the number of dimensions used increases, and when the dimension approaches 10, near-perfect fault classification accuracy is achieved. This shows that the dimension of the vibration signal can be considerably reduced without degrading fault diagnosis accuracy. In the variable importance analysis, the dimension-reduced principal components show higher contribution than the conventional statistical features, which supports the effectiveness of the dimension-reduced signals on fault diagnosis.

Fault diagnosis system of induction motor using artificial neural network (인공신경망을 이용한 유도전동기고장진단)

  • Byun, Yeun-Sub;Wang, Jong-Bae;Kim, Jong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2222-2224
    • /
    • 2002
  • Induction motors are critical components of many industrial machines and are frequently integrated in commercial equipment. The heavy economical losses and the deterioration of system reliability might be caused by the failure of induction motors in industrial field. Based on the reliability and cost competitiveness of driving system (motors), the faults detection and diagnosis of system is considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis (MCSA) method are emphasized. In this paper, MCSA method are used for induction motor fault diagnosis. This method analyzes the motors supply current. since this diagnoses faults of the motor. The diagnostic algorithm is based on the artificial neural network, and the diagnosis system is programmed by using LabVIEW and MATLAB.

  • PDF

Design of Network-Based Induction Motors Fault Diagnosis System Using Redundant DSP Microcontroller with Integrated CAN Module (DSP 마이크로컨트롤러를 사용한 CAN 네트워크 기반 유도전동기고장진단 시스템 설계)

  • Yoon, Chung-Sup;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.80-86
    • /
    • 2005
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is includes of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module processes the stator current, voltage, temperatures, vibration signal of the motor.

A study on the fault diagnosis system for Induction motor using current signal analysis (전류신호 분석을 통한 유도전동기 고장진단시스템 연구)

  • Byun, Yeun-Sub;Jang, Dong-Uk;Park, Hyun-June;Wang, Jong-Bae;Lee, Byung-Song
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.19-21
    • /
    • 2001
  • Induction motors are a critical component of many industrial machines and are frequently integrated in commercial equipment. The many economical losses and the deterioration of system reliability might be caused by the failure of induction motors in industrial field. Based on the reliability and cost competitiveness of driving system(motors), the faults detection and diagnosis of system is considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis (MCSA) method are emphasized. In this paper, MCSA method is used for induction motor fault diagnosis. This method analyzes the motor's supply current, since this diagnoses the motor's condition. The diagnostic system is constructed by using LabVIEW of National Instruments.

  • PDF

A study on the fault diagnosis system for Induction motor (유도전동기 고장진단시스템 연구)

  • Byun, Yeun-Sub;Park, Hyun-June;Kim, Gil-Dong;Han, Young-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2172-2174
    • /
    • 2001
  • Induction motors are a critical component of many industrial machines and are frequently integrated in commercial equipment. The many economical losses and the deterioration of system reliability might be caused by the failure of induction motors in industrial field. Based on the reliability and cost competitiveness of driving system (motors), the faults detection and diagnosis of system is considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis (MCSA) method are emphasized. In this paper, MCSA method is used for induction motor fault diagnosis. This method analyzes the motor's supply current, since this diagnoses the motor's condition. The diagnostic system is constructed by using LabVIEW of National Instruments.

  • PDF

The Fuzzy Fault Diagnosis System for Induction Motor

  • Sub, Byung-Yeun;Uk, Jang-Dong;Hyundai-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.65.1-65
    • /
    • 2001
  • Induction motors are a critical component of many industrial machines and are frequently integrated in commercial equipment. The many economical losses and the deterioration of system reliability might be caused by the failure of induction motors in industrial field. Based on the reliability and cost competitiveness of driving system motors, the faults detection and diagnosis of system is considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis MCSA method are emphasized. In this paper, MCSA method is used for induction motor fault diagnosis. This method analyzes the motor´s supply current, since this diagnoses the motor´s condition. The diagnostic system is constructed by using LabVIEW of National Instruments.

  • PDF

Reliable Fault Diagnosis Method Based on An Optimized Deep Belief Network for Gearbox

  • Oybek Eraliev;Ozodbek Xakimov;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.54-63
    • /
    • 2023
  • High and intermittent loading cycles induce fatigue damage to transmission components, resulting in premature gearbox failure. To identify gearbox defects, numerous vibration-based diagnostics techniques, using several artificial intelligence (AI) algorithms, have recently been presented. In this paper, an optimized deep belief network (DBN) model for gearbox problem diagnosis was designed based on time-frequency visual pattern identification. To optimize the hyperparameters of the model, a particle swarm optimization (PSO) approach was integrated into the DBN. The proposed model was tested on two gearbox datasets: a wind turbine gearbox and an experimental gearbox. The optimized DBN model demonstrated strong and robust performance in classification accuracy. In addition, the accuracy of the generated datasets was compared using traditional ML and DL algorithms. Furthermore, the proposed model was evaluated on different partitions of the dataset. The results showed that, even with a small amount of sample data, the optimized DBN model achieved high accuracy in diagnosis.

Fault tolerant control for remotely piloted vehicle (원격조종 비행체의 이상허용 제어)

  • Kim, Dae-Woo;Son, Won-Ki;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.683-690
    • /
    • 1999
  • This paper deals with a fault-tolerant control method for robust control of RPV(Remotely Piloted Vehicle). To design the flight control system, the 6-DOF simulation program has been developed based on the dynamic model of RPV. A robust fault detection and diagnosis method proposed by Kwon et al. [8]-[10] is adopted to detect the actuator fault of RPV and to make the controller reconfiguration. The Hoo control method is applied to the flight control system. An integrated simulation for performance evaluation of the fault-tolerat\nt control system designed is performed via 6 DOF simulation and shows that the control system works even under the actuator fault.

  • PDF