• Title/Summary/Keyword: Integrated dynamics modeling

Search Result 65, Processing Time 0.029 seconds

Integrated dynamics modeling for supercavitating vehicle systems

  • Kim, Seonhong;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.346-363
    • /
    • 2015
  • We have performed integrated dynamics modeling for a supercavitating vehicle. A 6-DOF equation of motion was constructed by defining the forces and moments acting on the supercavitating body surface that contacted water. The wetted area was obtained by calculating the cavity size and axis. Cavity dynamics were determined to obtain the cavity profile for calculating the wetted area. Subsequently, the forces and moments acting on each wetted part-the cavitator, fins, and vehicle body-were obtained by physical modeling. The planing force-the interaction force between the vehicle transom and cavity wall-was calculated using the apparent mass of the immersed vehicle transom. We integrated each model and constructed an equation of motion for the supercavitating system. We performed numerical simulations using the integrated dynamics model to analyze the characteristics of the supercavitating system and validate the modeling completeness. Our research enables the design of high-quality controllers and optimal supercavitating systems.

A Review of Open Modeling Platform Towards Integrated Water Environmental Management (통합 물환경 관리를 위한 개방형 모델링 플랫폼 고찰)

  • Lee, Sunghack;Shin, Changmin;Lee, Yongseok;Cho, Jaepil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.636-650
    • /
    • 2020
  • A modeling system that can consider the overall water environment and be used to integrate hydrology, water quality, and aquatic ecosystem on a watershed scale is essential to support decision-making in integrated water resources management (IWRM). In adapting imported models for evaluating the unique water environment in Korea, a platform perspective is becoming increasingly important. In this study, a modeling platform is defined as an ecosystem that continuously grows and provides sustainable values through voluntary participation- and interaction-of all stakeholders- not only experts related to model development, but also model users and decision-makers. We assessed the conceptual values provided by the IWRM modeling platform in terms of openness, transparency, scalability, and sustainability. I We also reviewed the technical aspects of functional and spatial integrations in terms of socio-economic factors and user-centered multi-scale climate-forecast information. Based on those conceptual and technical aspects, we evaluated potential modeling platforms such as Source, FREEWAT, Object Modeling System (OMS), OpenMI, Community Surface-Dynamics Modeling System (CSDMS), and HydroShare. Among them, CSDMS most closely approached the values suggested in model development and offered a basic standard for easy integration of existing models using different program languages. HydroShare showed potential for sharing modeling results with the transparency expected by model user-s. Therefore, we believe that can be used as a reference in development of a modeling platform appropriate for managing the unique integrated water environment in Korea.

Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures

  • Choi, Joonho;Kim, Heesun;Haj-ali, Rami
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.129-149
    • /
    • 2010
  • The objective of this study is to formulate a general 3D material-structural analysis framework for the thermomechanical behavior of steel-concrete structures in a fire environment. The proposed analysis framework consists of three sequential modeling parts: fire dynamics simulation, heat transfer analysis, and a thermomechanical stress analysis of the structure. The first modeling part consists of applying the NIST (National Institute of Standards and Technology) Fire Dynamics Simulator (FDS) where coupled CFD (Computational Fluid Dynamics) with thermodynamics are combined to realistically model the fire progression within the steel-concrete structure. The goal is to generate the spatial-temporal (ST) solution variables (temperature, heat flux) on the surfaces of the structure. The FDS-ST solutions are generated in a discrete form. Continuous FDS-ST approximations are then developed to represent the temperature or heat-flux at any given time or point within the structure. An extensive numerical study is carried out to examine the best ST approximation functions that strike a balance between accuracy and simplicity. The second modeling part consists of a finite-element (FE) transient heat analysis of the structure using the continuous FDS-ST surface variables as prescribed thermal boundary conditions. The third modeling part is a thermomechanical FE structural analysis using both nonlinear material and geometry. The temperature history from the second modeling part is used at all nodal points. The ABAQUS (2003) FE code is used with external user subroutines for the second and third simulation parts in order to describe the specific heat temperature nonlinear dependency that drastically affects the transient thermal solution especially for concrete materials. User subroutines are also developed to apply the continuous FDS-ST surface nodal boundary conditions in the transient heat FE analysis. The proposed modeling framework is applied to predict the temperature and deflection of the well-documented third Cardington fire test.

Quantitative Estimation of Radiation Damage in Reactor Pressure Vessel Steels by Using Multiscale Modeling (멀티스케일 모델링을 이용한 압력용기강의 조사손상 정량예측)

  • Lee, Gyeong-Geun;Kwon, Junhyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.113-121
    • /
    • 2014
  • In this work, an integrated model including molecular dynamics and chemical rate theory was implemented to calculate the growth of point defect clusters(PDC) and copper-rich precipitates(CRP) which could change the mechanical properties of reactor pressure vessel(RPV) steels in a nuclear power plant. A number of time-dependent differential equations were established and numerically integrated to estimate the evolution of irradiation defects. The calculation showed that the concentration of the vacancies was higher than that of the self-interstitial atoms. The higher concentration of vacancies induced a formation of the CRPs in the later stage. The size of the CRPs was used to estimate the mechanical property changes in RPV steels, as is the same case with the PDCs. The calculation results were compared with the measured values of yield strength change and Charpy V-notch transition temperature shift, which were obtained from the surveillance test data of Korean light water reactors(LWRs). The estimated values were in fair agreement with the experimental results in spite of the uncertainty of the modeling parameters.

Integrated Dynamic Modeling and Hardware Oriented Control Scheme for a Simulator of an Industrial Robot (산업용 로보트의 시뮬레이터를 위한 종합적인 동적모델링과 하드웨어 구성과 일치하는 제어구조)

  • 이민기;이광남;임계영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1759-1769
    • /
    • 1989
  • This paper presents the development of a simulator for an industrial robot. The simulator is characterized by a fully integrated dynamic model and a hardware oriented control scheme. The dynamic model includes the actuator dynamics as well as the manipulator dynamics to integrate the entire dynamics of the robot system. On the other hand, the control scheme is oriented as a hardware structure which is usually implemented in the industrial robot. That is to say, a conventional PI control law is used to regulate the position, the speed, and the current. A Pulse Wave Modulation (PWM)generator modulates the supplied voltage to the actuator. Since the simulator is consistent with the industrial robot system, it provides the essential design concepts for the development process of the robot. In practice, the simulator is applied to the SCARA robot which has been developed in GSIS. Here, it investigates the characteristics and performance of the robot with changing design parameters. Thus, the investigation furnishes criteria for the selection of acfuator, control gain, trajectory planning, etc.

  • PDF

Numerical simulation of the unsteady flowfield in complete propulsion systems

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.349-362
    • /
    • 2018
  • A non-linear numerical simulation technique for predicting the unsteady performances of an airbreathing engine is developed. The study focuses on the simulation of integrated propulsion systems, where a closer coupling is needed between the airframe and the engine dynamics. In fact, the solution of the fully unsteady flow governing equations, rather than a lumped volume gas dynamics discretization, is essential for modeling the coupling between aero-servoelastic modes and engine dynamics in highly integrated propulsion systems. This consideration holds for any propulsion system when a full separation between the fluid dynamic time-scale and engine transient cannot be appreciated, as in the case of flow instabilities (e.g., rotating stall, surge, inlet unstart), or in case of sudden external perturbations (e.g., gas ingestion). Simulations of the coupling between external and internal flow are performed. The flow around the nacelle and inside the engine ducts (i.e., air intakes, nozzles) is solved by CFD computations, whereas the flow evolution through compressor and turbine bladings is simulated by actuator disks. Shaft work balance and rotor dynamics are deduced from the estimated torque on each turbine/compressor blade row.

Incorporating Social & Economic Factors for the Pasture Project in Kum River (금강 참게목장화 사업의 사회-경제 통합모델링)

  • Jeon, Dae-Uk
    • Korean System Dynamics Review
    • /
    • v.12 no.1
    • /
    • pp.59-74
    • /
    • 2011
  • This article deals with an economic evalutation of the 'Pasture Project of Kum River', which is the farming plan of mitten crabs in a stream of it. An augmented model of social capital is based on the past ecological-economic system dynamics model and elaborated further with suggestions of social capital literature. During the modeling process a chain diagram of causal relations and its relevant mathematical equations are presented for simulating the project performance, and the simulation results are provided to contrast the dynamic behaviors of the former ecological-economic model with ones of the new model incorporating social capital. The results indicate that an increase in the economic benefit of the project could happen in case of considering the process of social capital accumulation around the case area, which can be regarded as a remarkable trial to approve the common confidence in the role of social capital to enhance an economic achievement.

  • PDF

A Study on the Efficient Flexible Multibody Dynamics Modeling of Deep Seabed Integrated Mining System with Subsystem Synthesis Method (부분시스템 합성방법을 이용한 심해저 통합 채광시스템의 효율적인 유연 다물체 동역학 모델링 연구)

  • Yun, Hong-Seon;Kim, Sung-Soo;Lee, Chang Ho;Kim, Hyung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1213-1220
    • /
    • 2015
  • A deep seabed integrated mining system consists of a mining vessel, a lifting pipe, a buffer station, a flexible pipe, and a mining robot for collecting manganese nodules. Recently, the concept of multiple mining robots was introduced to enhance to mining productivity. In this paper, the subsystem synthesis method was applied to the deep seabed integrated mining system in order to improve the efficiency of system analysis and to facilitate its extension to the system of multiple mining robots. Large deflections of the lifting and flexible pipe were considered by dividing a flexible pipe into several substructures, and applying flexible multibody dynamics to each substructure. Theoretical study has been carried out for the efficiency of the subsystem synthesis method for the integrated mining system, by comparing the arithmetic operational counts of the subsystem synthesis method with those of the conventional method.

Integrated fire dynamic and thermomechanical modeling of a bridge under fire

  • Choi, Joonho;Haj-Ali, Rami;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.815-829
    • /
    • 2012
  • This paper proposes a nonlinear computational modeling approach for the behaviors of structural systems subjected to fire. The proposed modeling approach consists of fire dynamics analysis, nonlinear transient-heat transfer analysis for predicting thermal distributions, and thermomechanical analysis for structural behaviors. For concretes, transient heat formulations are written considering temperature dependent heat conduction and specific heat capacity and included within the thermomechanical analyses. Also, temperature dependent stress-strain behaviors including compression hardening and tension softening effects are implemented within the analyses. The proposed modeling technique for transient heat and thermomechanical analyses is first validated with experimental data of reinforced concrete (RC) beams subjected to high temperatures, and then applied to a bridge model. The bridge model is generated to simulate the fire incident occurred by a gas truck on April 29, 2007 in Oakland California, USA. From the simulation, not only temperature distributions and deformations of the bridge can be found, but critical locations and time frame where collapse occurs can be predicted. The analytical results from the simulation are qualitatively compared with the real incident and show good agreements.

Forecasting Fish Communities in River Networks

  • Rashleigh, Brenda;White, Denis;Ebersole, Joe L.;Barber, Craig;Boxall, George;Brookes, Allen
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.150-157
    • /
    • 2012
  • Fish communities in river networks provide significant ecosystem services that will likely decline under future land use and climate change. We developed a model that simulates the consequences to multiple populations of one or more fish species-a meta-community-from multiple stressors across a river network. The model is spatially-explicit and age-structured, with three components: habitat suitability; population dynamics, including species interactions; and movement across a spatial network. Although this model is simple, it can form the basis of fisheries assessments and may be incorporated into an integrated modeling system for watershed management and prediction.