• Title/Summary/Keyword: Integrated Stress Response

Search Result 68, Processing Time 0.027 seconds

Versatile Roles of Microbes and Small RNAs in Rice and Planthopper Interactions

  • Mansour, Abdelaziz;Mannaa, Mohamed;Hewedy, Omar;Ali, Mostafa G.;Jung, Hyejung;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.432-448
    • /
    • 2022
  • Planthopper infestation in rice causes direct and indirect damage through feeding and viral transmission. Host microbes and small RNAs (sRNAs) play essential roles in regulating biological processes, such as metabolism, development, immunity, and stress responses in eukaryotic organisms, including plants and insects. Recently, advanced metagenomic approaches have facilitated investigations on microbial diversity and its function in insects and plants, highlighting the significance of microbiota in sustaining host life and regulating their interactions with the environment. Recent research has also suggested significant roles for sRNA-regulated genes during rice-planthopper interactions. The response and behavior of the rice plant to planthopper feeding are determined by changes in the host transcriptome, which might be regulated by sRNAs. In addition, the roles of microbial symbionts and sRNAs in the host response to viral infection are complex and involve defense-related changes in the host transcriptomic profile. This review reviews the structure and potential functions of microbes and sRNAs in rice and the associated planthopper species. In addition, the involvement of the microbiota and sRNAs in the rice-planthopper-virus interactions during planthopper infestation and viral infection are discussed.

Transcriptomic Insights into Abies koreana Drought Tolerance Conferred by Aureobasidium pullulans AK10

  • Jungwook Park;Mohamed Mannaa;Gil Han;Hyejung Jung;Hyo Seong Jeon;Jin-Cheol Kim;Ae Ran Park;Young-Su Seo
    • The Plant Pathology Journal
    • /
    • v.40 no.1
    • /
    • pp.30-39
    • /
    • 2024
  • The conservation of the endangered Korean fir, Abies koreana, is of critical ecological importance. In our previous study, a yeast-like fungus identified as Aureobasidium pullulans AK10, was isolated and shown to enhance drought tolerance in A. koreana seedlings. In this study, the effectiveness of Au. pullulans AK10 treatment in enhancing drought tolerance in A. koreana was confirmed. Furthermore, using transcriptome analysis, we compared A. koreana seedlings treated with Au. pullulans AK10 to untreated controls under drought conditions to elucidate the molecular responses involved in increased drought tolerance. Our findings revealed a predominance of downregulated genes in the treated seedlings, suggesting a strategic reallocation of resources to enhance stress defense. Further exploration of enriched Kyoto Encyclopedia of Genes and Genomes pathways and protein-protein interaction networks revealed significant alterations in functional systems known to fortify drought tolerance, including the terpenoid backbone biosynthesis, calcium signaling pathway, pyruvate metabolism, brassinosteroid biosynthesis, and, crucially, flavonoid biosynthesis, renowned for enhancing plant drought resistance. These findings deepen our comprehension of how AK10 biostimulation enhances the resilience of A. koreana to drought stress, marking a substantial advancement in the effort to conserve this endangered tree species through environmentally sustainable treatment.

The Study of Dynamic Safety Using M&S for Integrated Electro-mechanical Actuator Installed on Aircraft (M&S를 이용한 항공기용 통합형 전기식 구동장치의 동적 안전성 연구)

  • Lee, Sock-Kyu;Lee, Byoung-Ho;Lee, Jeung;Kang, Dong-Seok;Choi, Kwan-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.2
    • /
    • pp.108-115
    • /
    • 2015
  • Electro-mechanical actuator installed on aircraft consists of a decelerator which magnifies the torque in order to rotate an axis connected with aircraft control surface, a control section which controls the motor assembly through receiving orders from cockpit and a motor assembly which rotates the decelerator. Electro-mechanical actuator controls aircraft altitude, position, landing, takeoff, etc. It is an important part of a aircraft. Aircraft maneuvering causes vibrations to electro-mechanical actuator. Vibrations may result in structural fatigue. For that reason, it is necessary to analyze the system structural safety. In order to analyze the system structural safety. It is needed reasonable finite element model and structural response stress closed to real value. In this paper, analytic model is derived by using the simplified finite element model, and damping ratio which is closely related to response stress is derived by using modal test. So, we developed analytic model in less than 10 % error rate, compared with modal test. Vibration response stress close to real value was estimated from analytic model modified with modal experimental damping ratio. Estimation method for damping ratio with empirical formula was suggested partly. Finally, It was proved that electro-mechanical actuator had reasonable structure margin of safety at environmental random $3{\sigma}$ stress during life cycle.

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조강도해석 및 설계최적화에 관한 연구)

  • Yoon J.M.;Won J.H.;Kim J.S.;Choi J.H
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.128-137
    • /
    • 2006
  • In this paper, a CAD/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares for a complex model in which the modeling by parametric feature is not easy to apply. Unigraphics is used for CAD modeling, in which the process is automated by using UG/Knowledge Fusion for modeling itself and UG/Open API function for the other functions respectively. Structural analyses are also carried out automatically by ANSYS using the imported parasolid model. The developed system is applied for the PLS(Plasma Lighting System) consisting of more than 20 components, which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The analyses include responses by static, wind and impact loads. As a result of analyses, tilt assembly, which is a link between upper and lower body, is found to be the most critical component bearing higher stresses. Experiment is conducted using MTS to validate the analysis result. Optimization is carried out using the software Visual DOC for the tilt assembly to minimize material volume while maintaining allowable stress level. As a result of optimization, the maximum stress is reduced by 57% from the existing design, though the material volume has increased by 21%.

Relationships of Psychological Factors to Stress and Heart Rate Variability as Stress Responses Induced by Cognitive Stressors (스트레스에 대한 심리 반응 유형과 심박변이도의 관련성)

  • Jang, Eun Hye;Kim, Ah Young;Yu, Han Young
    • Science of Emotion and Sensibility
    • /
    • v.21 no.1
    • /
    • pp.71-82
    • /
    • 2018
  • Stress involves changes in behavior, autonomic function and the secretion of hormones. Autonomic nervous system (ANS) contributes to physiological adaptive process in short durations. In particular, heart rate variability (HRV) analysis is commonly used as a quantitative marker depicting the ANS activity related to mental stress. The aim of this study is to investigate correlations between psychological responses to stress and HRV indices induced by the cognitive stressor. Thirty-three participants rated their mental and physical symptoms occurred during the past two weeks on Stress Response Inventory (SRI), which is composed of seven stress factors that may influence the status of mental stress levels. Then, they underwent the psychophysiological procedures, which are collected electrocardiogram (ECG) signals during a cognitive stress task. HRV indices, the standard deviation of R-R interval (SDNN), root mean square of successive R-R interval difference (RMSSD) and low frequency (LF)/high frequency (HF) ratio were extracted from ECG signals. Physiological responses were calculated stress responses by subtracting mean of the baseline from the mean of recovery. Stress factors such as tension, aggression, depression, fatigue, and frustration were positively correlated to HRV indices. In particular, aggression had significant positive correlations to SDNN, RMSSD and LF/HF ratio. Increased aggressive responses to stress correlated with the increases of all HRV indices. This means the increased autonomic coactivation. Additionally, tension, depression, fatigue, and frustration were positively associated with RMSSD reflecting increases in parasympathetic activation. The autonomic coactivation may represent an integrated response to specific cognitive reactions such as the orienting response.

A Study on Usage of Integrated Digital-Physical Structure on Physical Homeostasis Space for Stress Reduction (디지털-피지컬 구조를 이용한 신체 항상성 유지 공간 연구)

  • Kang, Min Soo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.4
    • /
    • pp.574-580
    • /
    • 2020
  • Stress induces change to the body functions and causes chronic problems such as worsening a disease. Thus, humans want to evade anxiety and would try any means to reduce stressful situations. Generally, a person would handle their stress by either regulating their emotions or merely coping with the situation, for which the former is most widely used. Our research aims to effectively reduce stress by using the emotional response structure developed by Plutichik and the vitalization method. We extracted the relevant components of the stress-reduction method that would be applicable in any space using digital technologies such as sensors, IoT, and augmented reality. An architect or designer may incorporate these structural components into any structure to effectively reduce people's stress. The research aims to provide a new perspective of architectural space and to show applications of the stress-reducing architectural spaces, which should also fulfill the people's needs. Further research is needed to develop an automatic system to utilize spatial components more effectively.

Probabilistic shear-lag analysis of structures using Systematic RSM

  • Cheng, Jin;Cai, C.S.;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.507-518
    • /
    • 2005
  • In the shear-lag analysis of structures deterministic procedure is insufficient to provide complete information. Probabilistic analysis is a holistic approach for analyzing shear-lag effects considering uncertainties in structural parameters. This paper proposes an efficient and accurate algorithm to analyze shear-lag effects of structures with parameter uncertainties. The proposed algorithm integrated the advantages of the response surface method (RSM), finite element method (FEM) and Monte Carlo simulation (MCS). Uncertainties in the structural parameters can be taken into account in this algorithm. The algorithm is verified using independently generated finite element data. The proposed algorithm is then used to analyze the shear-lag effects of a simply supported beam with parameter uncertainties. The results show that the proposed algorithm based on the central composite design is the most promising one in view of its accuracy and efficiency. Finally, a parametric study was conducted to investigate the effect of each of the random variables on the statistical moment of structural stress response.

Rate-sensitive analysis of framed structures Part I: model formulation and verification

  • Izzuddin, B.A.;Fang, Q.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.221-237
    • /
    • 1997
  • This paper presents a new uniaxial material model for rate-sensitive analysis addressing both the transient and steady-state responses. The new model adopts visco-plastic theory for the rate-sensitive response, and employs a three-parameter representation of the overstress as a function of the strain-rate. The third parameter is introduced in the new model to control its transient response characteristics, and to provide flexibility in fitting test data on the variation of overstress with strain-rate. Since the governing visco-plastic differential equation cannot be integrated analytically due to its inherent nonlinearity, a new single-step numerical integration procedure is proposed, which leads to high levels of accuracy almost independent of the size of the integration time-step. The new model is implemented within the nonlinear analysis program ADAPTIC, which is used to provide several verification examples and comparison with other experimental and numerical results. The companion paper extends the three-parameter model to trilinear static stress-strain relationships for steel and concrete, and presents application examples of the proposed models.

Vibration characteristic of rubber isolation plate-shell integrated concrete liquid-storage structure

  • Cheng, Xuansheng;Qi, Lei;Zhang, Shanglong;Mu, Yiting;Xia, Lingyu
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.691-703
    • /
    • 2022
  • To obtain the seismic response of lead-cored rubber, shape memory alloy (SMA)-rubber isolation Plate-shell Integrated Concrete Liquid-Storage Structure (PSICLSS), based on a PSICLSS in a water treatment plant, built a scale experimental model, and a shaking table test was conducted. Discussed the seismic responses of rubber isolation, SMA-rubber isolation PSICLSS. Combined with numerical model analysis, the vibration characteristics of rubber isolation PSICLSS are studied. The results showed that the acceleration, liquid sloshing height, hydrodynamic pressure of rubber and SMA-rubber isolation PSICLSS are amplified when the frequency of seismic excitation is close to the main frequency of the isolation PSICLSS. The earthquake causes a significant leakage of liquid, at the same time, the external liquid sloshing height is significantly higher than internal liquid sloshing height. Numerical analysis showed that the low-frequency acceleration excitation causes a more significant dynamic response of PSICLSS. The sinusoidal excitation with first-order sloshing frequency of internal liquid causes a more significant sloshing height of the internal liquid, but has little effect on the structural principal stresses. The sinusoidal excitation with first-order sloshing frequency of external liquid causes the most enormous structural principal stress, and a more significant external liquid sloshing height. In particular, the principal stress of PSICLSSS with long isolation period will be significantly enlarged. Therefore, the stiffness of the isolation layer should be properly adjusted in the design of rubber and SMA-rubber isolation PSICLSS.

Automated Finite Element Mesh Generation for Integrated Structural Systems (통합 구조 시스템의 유한요소망 형성의 자동화)

  • Yoon, Chongyul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.77-82
    • /
    • 2023
  • The structural analysis module is an essential part of any integrated structural system. Diverse integrated systems today require, from the analysis module, efficient real-time responses to real-time input such as earthquake signals, extreme weather-related forces, and man-made accidents. An integrated system may also be for the entire life span of a civil structure conceived during the initial conception, developed throughout various design stages, effectively used in construction, and utilized during usage and maintenance. All these integrated systems' essential part is the structural analysis module, which must be automated and computationally efficient so that responses may be almost immediate. The finite element method is often used for structural analysis, and for automation, many effective finite element meshes must be automatically generated for a given analysis. A computationally efficient finite element mesh generation scheme based on the r-h method of mesh refinement using strain deviations from the values at the Gauss points as error estimates from the previous mesh is described. Shape factors are used to sort out overly distorted elements. A standard cantilever beam analyzed by four-node plane stress elements is used as an example to show the effectiveness of the automated algorithm for a time-domain dynamic analysis. Although recent developments in computer hardware and software have made many new applications in integrated structural systems possible, structural analysis still needs to be executed efficiently in real-time. The algorithm applies to diverse integrated systems, including nonlinear analyses and general dynamic problems in earthquake engineering.