• Title/Summary/Keyword: Integrated STEM

Search Result 116, Processing Time 0.026 seconds

Secondary Teachers' Perceptions and Needs Analysis on Integrative STEM Education (통합 STEM 교육에 대한 중등 교사의 인식과 요구)

  • Lee, Hyo-Nyong;Son, Dong-Il;Kwon, Hyuk-Soo;Park, Kyung-Suk;Han, In-Ki;Jung, Hyun-Il;Lee, Seong-Soo;Oh, Hee-Jin;Nam, Jung-Chul;Oh, Young-Jai;Phang, Seong-Hye;Seo, Bo-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.1
    • /
    • pp.30-45
    • /
    • 2012
  • Educational communities around the world have concentrated on integrative efforts among science, technology, engineering and mathematics (Science, Technology, Engineering, and Mathematics: STEM) subjects. Korea has focused on integrative education among STEAM (Science, Technology, Engineering, Arts, and Mathematics) school subjects to raise talented human resources in the fields of science and technology. The purpose of this study was to analyze secondary school science, technology, and mathematics teacher's perceptions and needs toward integrated education and integrative STEM education. A total of 251 secondary school teachers from all areas of the country who have taught science, mathematics, and technology were surveyed by using a self-reported instrument. The findings were as follows: First, teachers have used little integrated education in their classes due to insufficient time in the actual preparation of the integrated education and the lack of expertise, teaching experience, and teaching-learning materials for the integrated education, while they have positive thoughts about the need of integrated education. Second, they presented several needs to facilitate the integrated education: development of a variety of integrated programs, school administrative and financial support, and in-service teachers' training. Third, overall perception toward integrated STEM education was not sufficient, but most teachers perceived the need toward integrated STEM education due to students' development in their creativity, thinking skills, and adaptability. Fourth, they perceived that it was imperative to develop the various integrated STEM education programs, distribute the materials, and help STEM teachers' understanding toward integrated STEM education. Fifth, they perceived that the most relevant method to integrate STEM subjects was the problem solving approach. In addition, they appreciate that the integrated STEM education is highly efficient in not only developing integrated problem solving skills and STEM related literacy, but also in positively impacting the rise of talented human resources in the fields of science and technology. In order to increase the awareness of STEM-related secondary school teachers and vitalize the integrated STEM education, it is necessary to develop and spread a variety of programs, effective teaching and learning materials, and teachers' training programs.

Identification of DNA Aptamers toward Epithelial Cell Adhesion Molecule via Cell-SELEX

  • Kim, Ji Won;Kim, Eun Young;Kim, Sun Young;Byun, Sang Kyung;Lee, Dasom;Oh, Kyoung-Jin;Kim, Won Kon;Han, Baek Soo;Chi, Seung-Wook;Lee, Sang Chul;Bae, Kwang-Hee
    • Molecules and Cells
    • /
    • v.37 no.10
    • /
    • pp.742-746
    • /
    • 2014
  • The epithelial cell adhesion molecule (EpCAM, also known as CD326) is a transmembrane glycoprotein that is specifically detected in most adenocarcinomas and cancer stem cells. In this study, we performed a Cell systematic evolution of ligands by exponential enrichment (SELEX) experiment to isolate the aptamers against EpCAM. After seven round of Cell SELEX, we identified several aptamer candidates. Among the selected aptamers, EP166 specifically binds to cells expressing EpCAM with an equilibrium dissociation constant (Kd) in a micromolar range. On the other hand, it did not bind to negative control cells. Moreover, EP166 binds to J1ES cells, a mouse embryonic stem cell line. Therefore, the isolated aptamers against EpCAM could be used as a stem cell marker or in other applications in both stem cell and cancer studies.

The Effects of Mathematics-Centered STEAM Program on Middle School Students' Interest in STEM Career and Integrated Problem Solving Ability (수학교과 중심의 STEAM 수업이 중학생들의 STEM 분야 진로 흥미도 및 융합적 문제해결력에 미치는 영향)

  • Han, Hyesook
    • Communications of Mathematical Education
    • /
    • v.31 no.1
    • /
    • pp.125-147
    • /
    • 2017
  • The purpose of this study was to investigate the effects of mathematics-centered STEAM program which was operated in free semester system classes on middle school students' interest in science, technology/engineering, and mathematics(STEM) career and integrated problem solving ability. The study was conducted with 40 first graders in a middle school for 12 weeks using mathematics-centered STEAM program developed for the use of free semester system classes by the support of the Ministry of Education/KOFAC in 2016. According to the results of STEM career interest survey, mathematics-centered STEAM program was effective for improving middle school students' interest in STEM career. And it was also effective in the development of students' integrated problem solving ability.

Using Project-Based Learning Method As a Way to Engage Students in STEM Education

  • Lee, Mi Yeon;Robles, Rolando
    • Research in Mathematical Education
    • /
    • v.22 no.2
    • /
    • pp.83-97
    • /
    • 2019
  • Science, Technology, Engineering, and Mathematics (STEM) education has been at the forefront of K-12 curricula in the technology-rich 21st century, with emphasis on how these fields reinforce each other in preparing students for a dynamic future. However, there is a need for greater attention to STEM education research in the mathematics education community, in particular to pedagogical approaches that facilitate integrating the mathematics component of STEM education. Toward this end, the authors report the outcomes of a Project-based Learning (PBL) unit in which upper elementary students integrated STEM elements by researching, crafting, testing, and evaluating kites they created by applying scientific knowledge of aerodynamics and mathematical knowledge of polygons, surface area, graphs, and data analysis. This unit, which the authors developed, implemented, and assessed, demonstrates how STEM subjects and in particular mathematics can be effectively integrated in upper elementary school classrooms through PBL.

Effect of the Integrated STEM Project Learning Themed 'Lighting of Quantum Dot Solution' on Science High-School Small-Group Students' Problem Solving and Scientific Attitude ('양자점 용액의 발광'을 주제로 한 융합형 STEM 프로젝트 학습이 과학고등학교 소집단 학생들의 문제해결력과 과학적 태도에 미치는 효과)

  • Yi, Seung-Woo;Kim, Youngmin
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1356-1363
    • /
    • 2018
  • The purpose of this study was to investigate science high-school students' creativity and scientific attitude when an integrated science, technology, engineering and mathematics (STEM) project themed 'lighting of quantum dot solution' was applied to them. The subjects were a one team composed of 3 students in the 11th grade desiring to participate in the Korea Science Exhibition. They began with a scientific inquiry related to the physical properties of the QD solution and then gradually showed the process of expansion of their ideas into the integration of engineering, technology, and mathematics. Also, during the process, they showed problem solving ability and scientific attitudes, such as cooperation, endurance, and satisfaction of accomplishment.

Surface Topographic Effect on Mesenchymal Stem Cells in Tissue Engineering

  • Yun, Young-Shik;Kang, Eun-Hye;Yun, In Sik;Kim, Yong Oock;Yeo, Jong-Souk
    • Journal of International Society for Simulation Surgery
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • In the field of tissue engineering, researches have been actively conducted to regulate stem cell fate by understanding the interaction between cell and materials. This approach is expected as a promising therapeutic method in the future medicine by utilizing differentiation of stem cells into desired cells or tissues using biomaterial. For this regenerative medicine, there exist lots of attempts to construct optimized structures of various shapes and sizes that can regulate the stem cell fate. In this review, we will empathize the topographic effect as stem cell niche on the mesenchymal stem cell (MSC) response (cell attachment, proliferation, and differentiation) according to the shape and size of the structure of the substrates, and comprehensively analyze the importance and the effect of shape and size of the surface topography.

An integrated bioinformatics analysis of mouse testis protein profiles with new understanding

  • Liu, Fujun;Wang, Haiyan;Li, Jianyuan
    • BMB Reports
    • /
    • v.44 no.5
    • /
    • pp.347-351
    • /
    • 2011
  • The testis is major male gonad responsible for spermatogenesis and steroidogenesis. Much knowledge is still remained to be learned about the control of these events. In this study, we performed a comprehensive bioinformatics analysis on 1,196 mouse testis proteins screened from public protein database. Integrated function and pathway analysis were performed through Database for Annotation, Visualization and Integrated Discovery (DAVID) and ingenuity Pathway Analysis (IPA), and significant features were clustered. Protein membrane organization and gene density on chromosomes were analyzed and discussed. The enriched bioinformatics analysis could provide clues and basis to the development of diagnostic markers and therapeutic targets for infertility and male contraception.

Stem cell behaviors on periodic arrays of nanopillars analyzed by high-resolution scanning electron microscope images

  • Jihun Kang;Eun-Hye Kang;Young-Shik Yun;Seungmuk Ji;In-Sik Yun;Jong-Souk Yeo
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.26.1-26.3
    • /
    • 2020
  • The biocompatible polyurethane acrylate (PUA) nanopillars were fabricated by soft lithography using three different sizes of nanobeads (350, 500, and 1000 nm), and the human adipose-derived stem cells (hASCs) were cultured on the nanopillars. The hASCs and their various behaviors, such as cytoplasmic projections, migration, and morphology, were observed by high resolution images using a scanning electron microscope (SEM). With the accurate analysis by SEM for the controlled sizes of nanopillars, the deflections are observed at pillars fabricated with 350- and 500- nm nanobeads. These high-resolution images could offer crucial information to elucidate the complicated correlations between nanopillars and the cells, such as morphology and cytoplasmic projections.

The Impact of Integrating Engineering into Science Learning on Student's Conceptual Understandings of the Concept of Heat Transfer

  • Park, Mi-Sun;Nam, Youn-Kyeong;Moore, Tamara;Roehrig, Gillian
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.4 no.2
    • /
    • pp.89-101
    • /
    • 2011
  • Science, Mathematics, Engineering, and Technology (STEM) integrated education has been spotlighted as a new approach for promoting students' conceptual understanding and supporting their future career in STEM field. There is increasing evidence of the positive impact of using a whole design process that can be an example of STEM integrated activities to improve students' conceptual understanding and problem solving skills. However, there is a lack of information on how teachers should accomplish science and engineering integration activities in their classroom and what process they should pay attention. To answer this question, we research the relationship between an design process and students' conceptual understanding using an engineering design activity, called 'Save the Penguins', and study on how each step in an engineering design process in this activity enhance students' conceptual knowledge in science. We found that testing their prototypes and discussing with their peers were the most important process for students to understand and apply science concept for their design, even though the whole engineering design process (demonstration about radiation, discussion about examples in our lives, and testing and reviewing their prototypes, and making final design) helps the students understand the scientific concepts.

Screening of Korean Herbal Medicines with Inhibitory Effect on Aldose Reductase (VI) (한국산 약용식물 추출물의 알도즈 환원 효소 억제 효능 검색 (VI))

  • Lee, Yun-Mi;Kim, Young-Sook;Kim, Joo-Hwan;Kim, Jin-Sook
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.4
    • /
    • pp.371-378
    • /
    • 2011
  • Aldose reductase (AR) has been implicated in the development of the diabetic complications. To discover novel treatments for diabetic complications from natural sources, 65 Korean herbal medicines have been investigated for inhibitory activities on AR. Of these, 23 herbal medicines exhibited a significant inhibitory activity compared with 3,3-tetramethyleneglutaric acid (TMG). Particularly, 8 herbal medicines, Acer tataricum (twig, stem and leaf), Acer tataricum (fruit), Rhododendron schlippenbachii (twig, stem and leaf), Weigela subsessilis (twig, stem and leaf), Acer mono (branch and leaf), Ailanthus altissima (twig, stem and leaf), Lindera obtusiloba (branch and leaf), Solidago serotina (whole plant) showed three times more potent inhibitory activity than the positive control, TMG.