• Title/Summary/Keyword: Integrated Positioning

Search Result 256, Processing Time 0.018 seconds

Test and Integration of Location Sensors for Position Determination in a Pedestrian Navigation System

  • Retscher, Guenther;Thienelt, Michael
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.251-256
    • /
    • 2006
  • In the work package 'Integrated Positioning' of the research project NAVIO (Pedestrian Navigation Systems in Combined Indoor/Outdoor Environements) we are dealing with the navigation and guidance of visitors of our University. Thereby start points are public transport stops in the surroundings of the Vienna University of Technology and the user of the system should be guided to certain office rooms or persons. For the position determination of the user different location sensors are employed, i.e., for outdoor positioning GPS and dead reckoning sensors such as a digital compass and gyro for heading determination and accelerometers for the determination of the travelled distance as well as a barometric pressure sensor for altitude determination and for indoor areas location determination using WiFi fingerprinting. All sensors and positioning methods are combined and integrated using a Kalman filter approach. Then an optimal estimate of the current location of the user is obtained using the filter. To perform an adequate weighting of the sensors in the stochastic filter model, the sensor characteristics and their performance was investigated in several tests. The tests were performed in different environments either with free satellite visibility or in urban canyons as well as inside of buildings. The tests have shown that it is possible to determine the user's location continuously with the required precision and that the selected sensors provide a good performance and high reliability. Selected tests results and our approach will be presented in the paper.

  • PDF

Design and Implementation of an Integrated Positioning System for Location-Based Services (위치기반서비스를 위한 통합측위시스템 설계 및 응용)

  • Yim, Jae-Geol;Nam, Yoon-Seok;Joo, Jae-Hun
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.4
    • /
    • pp.57-70
    • /
    • 2006
  • Location Based Service (LBS) provides high-value added service to users and various works about IBS have been actively performed. The core technology or LBS is positioning of the users. In the field of positioning, outdoor positioning and indoor positioning are developed separately. We are proposing a design of an outdoor-indoor positioning system, implementing a prototype of the system, and verifying the usefulness of the system through experiments. Our experimental results shows that the average error of our system is 4.8 m in the case of out-door positioning and it is 3.3 m in the case of in-door positioning.

  • PDF

GPS/GF-INS Integrated Navigation System with High Rate Position, Velocity, and Attitude Aiding of GPS

  • Son, Jae Hoon;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.59-70
    • /
    • 2022
  • In this paper, a GPS/GF-INS integrated navigation system is proposed, in which the high rate attitude aiding signal, the high rate position and velocity aiding of GPS receiver is used for the cube structure of the GF-IMU, effectiveness of the proposed GPS/GF-INS integrated navigation system was shown when the vehicle follows two trajectories, circling and spiraling. Performance evaluation results show that the proposed GPS/GF-INS integrated navigation method gives better navigation outputs when the attitude output of GPS is used and more better navigation outputs are obtained when the rate of GPS aiding signal is higher.

Analysis of Multi-Differential GNSS Positioning Accuracy in Various Signal Reception Environments

  • Tae, Hyunu;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.1
    • /
    • pp.15-24
    • /
    • 2018
  • This study analyzed positioning accuracy of the multi-differential global navigation satellite system (DGNSS) algorithm that integrated GPS, GLONASS, and BDS. Prior to the analysis, four sites of which satellite observation environment was different were selected, and satellite observation environments for each site were analyzed. The analysis results of the algorithm performance at each of the survey points showed that high positioning performance was obtained by using DGPS only without integration of satellite navigation systems in the open sky environment but the positioning performance of multi-DGNSS became higher as the satellite observation environments degraded. The comparison results of improved positioning performance of the multi-DGNSS at the poor reception environment compared to differential global positioning system (DGPS) positioning results showed that horizontal accuracy was improved by 78% and vertical accuracy was improved by 65% approximately.

Simulator Design Using a General Purpose PC and Off-The-Shelf Interface Boards for GNSS/INS Integrated Navigation System (GNSS/INS 통합항법 시스템을 위한 범용 PC와 Off-The-Shelf 인터페이스 보드를 이용한 시뮬레이터 설계)

  • Jae Hoon Son;Sang Heon Oh;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.93-102
    • /
    • 2024
  • Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS) integrated navigation systems provide highly accurate and reliable navigation solutions and are widely used as civil and military navigation systems. In order to facilitate the GNSS/INS integrated navigation system development task, a simulator can be used to provide inputs for the GNSS/INS integrated navigation system. In this paper, a simulator design using general-purpose Personal Computer (PC) and Off-The-Shelf (OTS) interface boards for a GNSS/INS integrated navigation system is proposed and implementation results are presented. Requirements of the GNSS/INS integrated navigation system simulator are presented and a design method that satisfies the requirements is described. In order to show the usefulness of the proposed design method, a simulator using a general-purpose PC and OTS interface boards for the GPS/INS integrated navigation system are implemented and verified. The implementation results show that the simulator designed by the proposed method generates the GPS L1 C/A signal and IMU data without any problems.

Performance Analysis of MUSIC-Based Jammer DOA Estimation Technique for a Misaligned Antenna Array

  • Park, Kwansik;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.7-13
    • /
    • 2020
  • As a countermeasure against the threat of jamming which can disrupt operation of the Global Positioning System (GPS) receivers, various kinds of technique to estimate the Direction-Of-Arrivals (DOAs) of incoming jamming signals have been widely studied, and among them, the MUltiple SIgnal Classification (MUSIC) algorithm is known to provide very high resolution. However, since the previous studies regarding the MUSIC algorithm does not consider the orientation of each antenna element of antenna arrays, there is a possibility that DOA estimation performance degrades in the case of a misaligned antenna array whose antenna elements are not oriented along the same direction. As an effort to solve this problem, there exists a previous work which presents an MUSIC-based method for DOA estimation. However, the error between the real and measured values of each antenna orientation is not taken into consideration. Therefore, in this paper, the effect of the aforementioned error on the DOA estimation performance in the case of a misaligned antenna array is analyzed by simulations.

Feasibility Study of Structural Behavior Monitoring Using GPS and Accelerometer (GPS와 가속도계를 이용한 구조물 거동모니터링의 타당성 연구)

  • Han, Jung Hun;Ryu, Sung Chan;Cho, Doo Yong;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.11-22
    • /
    • 2012
  • In this study, problems of RTK (Real Time Kinematic)-GPS (Global Positioning System) and an accelerometer sensor when applied to structures were experimentally identified through a comparison between results of the displacement measurement using the RTK-GPS, the accelerometer, and LVDT (Linear variable differential transformer). Integrated displacement was calculated by the improved RTK-GPS and accelerometer on the frequency of observation and positioning accuracy. This integrated displacement was also compared with that of LVDT to check the validity of application and feasibility.

Walking/Non-walking and Indoor/Outdoor Cognitive-based PDR/GPS/WiFi Integrated Pedestrian Navigation for Smartphones

  • Eui Yeon Cho;Jae Uk Kwon;Seong Yun Cho;JaeJun Yoo;Seonghun Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.399-408
    • /
    • 2023
  • In this paper, we propose a solution that enables continuous indoor/outdoor positioning of smartphone users through the integration of Pedestrian Dead Reckoning (PDR) and GPS/WiFi signals. Considering that accurate step detection affects the accuracy of PDR, we propose a Deep Neural Network (DNN)-based technology to distinguish between walking and non-walking signals such as walking in place. Furthermore, in order to integrate PDR with GPS and WiFi signals, a technique is used to select a proper measurement by distinguishing between indoor/outdoor environments based on GPS Dilution of Precision (DOP) information. In addition, we propose a technology to adaptively change the measurement error covariance matrix by detecting measurement outliers that mainly occur in the indoor/outdoor transition section through a residual-based χ2 test. It is verified through experiments on a testbed that these technologies significantly improve the performance of PDR and PDR/GPS/WiFi fingerprinting-based integrated pedestrian navigation.

Precise Positioning of Farm Vehicle Using Plural GPS Receivers - Error Estimation Simulation and Positioning Fixed Point - (다중 GPS 수신기에 의한 농업용 차량의 정밀 위치 계측(I) - 오차추정 시뮬레이션 및 고정위치계측 -)

  • Kim, Sang-Cheol;Cho, Sung-In;Lee, Seung-Gi;Lee, W.Y.;Hong, Young-Gi;Kim, Gook-Hwan;Cho, Hee-Je;Gang, Ghi-Won
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.116-121
    • /
    • 2011
  • This study was conducted to develop a robust navigator which could be in positioning for precision farming through developing a plural GPS receiver with 4 sets of GPS antenna. In order to improve positioning accuracy by integrating GPS signals received simultaneously, the algorithm for processing plural GPS signal effectively was designed. Performance of the algorithm was tested using a simulation program and a fixed point on WGS 84 coordinates. Results of this study are aummarized as followings. 1. 4 sets of lower grade GPS receiver and signals were integrated by kalman filter algorithm and geometric algorithm to increase positioning accuracy of the data. 2. Prototype was composed of 4 sets of GPS receiver and INS components. All Star which manufactured by CMC, gyro compass made by KVH, ground speed sensor and integration S/W based on RTOS(Real Time Operating System)were used. 3. Integration algorithm was simulated by developed program which could generate random position error less then 10 m and tested with the prototype at a fixed position. 4. When navigation data was integrated by geometrical correction and kalman filter algorithm, estimated positioning erros were less then 0.6 m and 1.0 m respectively in simulation and fixed position tests.