Browse > Article
http://dx.doi.org/10.11003/JPNT.2022.11.2.59

GPS/GF-INS Integrated Navigation System with High Rate Position, Velocity, and Attitude Aiding of GPS  

Son, Jae Hoon (Department of Electronics Engineering, Chungnam National University)
Oh, Sang Heon (Advanced Technology Laboratory, Microinfinity Co. Ltd.)
Hwang, Dong-Hwan (Department of Electronics Engineering, Chungnam National University)
Publication Information
Journal of Positioning, Navigation, and Timing / v.11, no.2, 2022 , pp. 59-70 More about this Journal
Abstract
In this paper, a GPS/GF-INS integrated navigation system is proposed, in which the high rate attitude aiding signal, the high rate position and velocity aiding of GPS receiver is used for the cube structure of the GF-IMU, effectiveness of the proposed GPS/GF-INS integrated navigation system was shown when the vehicle follows two trajectories, circling and spiraling. Performance evaluation results show that the proposed GPS/GF-INS integrated navigation method gives better navigation outputs when the attitude output of GPS is used and more better navigation outputs are obtained when the rate of GPS aiding signal is higher.
Keywords
GPS/GF-INS integrated navigation algorithm; GF-INS; integration Kalman filter; GF-IMU;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Schuler, A. R., Grammatikos, A., & Fegley, K. A. 1967, Measuring rotational motion with linear accelerometers, IEEE Transactions on Aerospace and Electronic Systems, AES-3, 465-472. https://doi.org/10.1109/TAES.1967.5408811   DOI
2 Septentrio 2009, AsteRx2eH: GPS/GLONASS Dual-frequency Heading receiver, SSNDS 09/2009/17. http://www.formosatrend.com/Precision_SUM.html
3 Son, J. H., Oh, S. H., & Hwang, D.-H. 2020, Design of loosely-coupled GPS/GF-INS integrated navigation algorithm, 2020 IPNT Conference, Yeosu, 11-13 Nov 2020.
4 Swift Navigation 2019, Piksi Multi, GNSS Module Hardware Specification, 000-534-02-02. https://www.swiftnav.com/piksi-multi
5 Sorrentino, F., Lien, Y., Rosi, G., Cacciapuoti, L., Prevedelli, M., & Tino, G. 2010, Sensitive Gravity- Gradiometry with Atom Interferometry: Progress Towards an Improved Determination of the Gravitational Constant, New Journal of Physics, 12, 1-16. https://doi.org/10.1088/1367-2630/12/9/095009   DOI
6 McGuirk, J. M., Foster, G. T., Fixler, J. B., Snadden, M. J., & Kasevich, M. A. 2002, Sensitive Absolute-Gravity Gradiometry Using Atom Interferometry, Physics Review A, 65, 1-14. https://doi.org/10.1103/PhysRevA.65.033608   DOI
7 Tan, C.-W. & Park, S. 2005, Design of Accelerometer-Based Inertial Navigation Systems, IEEE Transactions on Instrumentation and Measurement, 54, 2520-2530. https://doi.org/10.1109/TIM.2005.858129   DOI
8 Titterton, D. H. & Weston, J. L. 2004, Strapdown Inertial Navigation Technology, 2nd Ed. (Stevenage: The Institute of Electrical Engineers)
9 u-blox 2015, NEO-7 series - u-blox 7 GNSS modules, product information, UBX-13003342-R07. https://www.u-blox.com/en/product/neo-7-series
10 u-blox 2021, NEO-M8 - u-blox M8 concurrent GNSS modules Data sheet, UBX-15031086-R11. https://www.u-blox.com/en/product/neo-m8-series
11 Qin, Z., Baron, L., & Birglen, L. 2009, Robust design of inertial measurement units based on accelerometers, Journal of Dynamic Systems Measurement and Control, 131, 1-10. https://doi.org/10.1115/1.3072157   DOI
12 Honeywell 2021, GG1320AN Digital Laser Gyro, Brochure: GG1320AN Digital Ring Laser. https://aerospace.honeywell.com/us/en/learn/products/sensors/gg1320an-digital-ring-laser-gyroscope
13 Chen, J. H., Lee, S.-C., & Debra, D. B. 1994, Gyroscope free strapdown inertial measurement unit by six linear accelerometers, Journal of Guidance, Control, and Dynamics, 17, 286-290. https://doi.org/10.2514/3.21195   DOI
14 Edwan, E., Knedlik, S., Zhou, J., & Loffeld, O. 2009, GPS/INS integration for GF-IMU of twelve mono-axial accelerometers configurations, in the 6th Workshop on Positioning, Navigation, and Communication 2009(WPNC' 09), Hannover, Germany, 19 Mar 2009. https://doi.org/10.1109/WPNC.2009.4907825   DOI
15 Honeywell 2004, Q-FLEX QA-2000 ACCELEROMETER, The inertial navigation standard, N61-2509-000-000. https://aerospace.honeywell.com/us/en/learn/products/ sensors/qa-2000-single-axis-quartz-accelerometer
16 Klein, I. 2015, Analytic error assessment of gyro-free INS, Journal of Applied Geodesy, 9, 49-61. https://doi.org/10.1515/jag-2014-0015   DOI
17 Li, Y., Zhang, K., Roberts C., Murata, M. 2004, On-the-fly GPS-based attitude determination using single and double- differenced carrier phase measurements, GPS Solutions, 8, 93-102. https://doi.org/10.1007/s10291-004-0089-3   DOI
18 Liu, F., Su, Z., Zhao, H, Li, Q., & Li, C. 2019, Attitude Measurement for High-Spinning Projectile with a Hollow MEMS IMU Consisting of Multiple Accelerometers and Gyros, Sensors, 19, 1799. https://doi.org/10.3390/s19081799   DOI
19 Moon, J. 2014, Design of a Real-time GPS Attitude Determination System using Low-cost GPS Receivers, M.S. Thesis, Chungbuk National University. https://cbnul.chungbuk.ac.kr/search/DetailView.ax?sid=1&cid=2536291
20 Marques Filho, E. A., Kuga, H. K., & Neto, A. R. 2006, Integrated GPS/INS Navigation System Based on a Gyroscope-Free IMU, in DINCON 2006: Brazilian Conferenceon Dynamics, Control and Their Applications, Guaratingueta, SP, Brazil, 22-26 May 2006
21 Nusbaum, U. & Klein, I. 2017, Control theoretic approach to gyro-free inertial navigation systems, IEEE Aerospace and Electronic Systems Magazine, 32, 38-45. https://doi.org/10.1109/MAES.2017.160174   DOI
22 Pachter, M. Welker, T. C., & Huffman, R. E. Jr. 2013, Gyrofree INS theory, Navigation: Journal of The Institute of Navigation, 60, 85-96. https://doi.org/10.1002/navi.32   DOI
23 Park, C. 1996, Attitude determination from GPS carrier phase measurements, PhD Thesis, Seoul National University.
24 Park, S. & Tan, C.-W. 2002, GPS-aided gyroscope-free inertial navigation systems, California PATH Research Report, UCB-IRS-PRR-2002-22.