• Title/Summary/Keyword: Integrated CFD

Search Result 104, Processing Time 0.023 seconds

Analysis of Air Current Characteristics for Installing Wind Turbines Between Buildings (건물 사이에 풍력발전기를 설치하기 위한 기류특성분석)

  • Park, Min-Woo;You, Jang-Youl;Sohn, Young-Moo;You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.117-125
    • /
    • 2018
  • Recently, various building integrated wind power (BIWP) approaches have been used to produce energy by installing wind power generators in high-rise buildings constructed in urban areas. BIWP has advantages in that it does not require support to position the turbine up to the installation height, and the energy produced by the wind turbine can be applied directly to the building. The accurate evaluation of wind speed is important in urban wind power generation. In this study, a wind tunnel test and computational fluid dynamics (CFD) analysis were conducted to evaluate the wind speed for installing wind turbines between buildings. The analysis results showed that the longer the length of the buildings, which had the same height, the larger the wind speed between the two buildings. Furthermore, the narrower the building's width, the higher the wind velocity; these outcomes are due to the increase in the Venturi effect. In addition, the correlation coefficient between the results of the wind tunnel test and the CFD analysis was higher than 0.8, which is a very high value.

Numerical simulation of the unsteady flowfield in complete propulsion systems

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.349-362
    • /
    • 2018
  • A non-linear numerical simulation technique for predicting the unsteady performances of an airbreathing engine is developed. The study focuses on the simulation of integrated propulsion systems, where a closer coupling is needed between the airframe and the engine dynamics. In fact, the solution of the fully unsteady flow governing equations, rather than a lumped volume gas dynamics discretization, is essential for modeling the coupling between aero-servoelastic modes and engine dynamics in highly integrated propulsion systems. This consideration holds for any propulsion system when a full separation between the fluid dynamic time-scale and engine transient cannot be appreciated, as in the case of flow instabilities (e.g., rotating stall, surge, inlet unstart), or in case of sudden external perturbations (e.g., gas ingestion). Simulations of the coupling between external and internal flow are performed. The flow around the nacelle and inside the engine ducts (i.e., air intakes, nozzles) is solved by CFD computations, whereas the flow evolution through compressor and turbine bladings is simulated by actuator disks. Shaft work balance and rotor dynamics are deduced from the estimated torque on each turbine/compressor blade row.

Analysis of computational fluid dynamics on design of nozzle for integrated cryogenic gas and MQL(minimum quantity lubrication) (극저온 가스와 MQL(minimum quantity lubrication)의 복합 분사를 위한 하이브리드 노즐 설계에 관한 전산유체역학 해석)

  • Song, Ki-Hyeok;Shin, Bong-Cheol;Yoon, Gil-Sang;Ha, Seok-Jae
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.41-47
    • /
    • 2019
  • In conventional machining, the use of cutting fluid is essential to reduce cutting heat and to improve machining quality. However, to increase the performance of cutting fluids, various chemical components have been added. However, these chemical components during machining have a negative impact on the health of workers and cutting environment. In current machining, environment-friendly machining is conducted using MQL (minimum quantity lubrication) or cryogenic air spraying to minimize the harmful effects. In this study, the injection nozzle that can combined injecting minimum quantity lubrication(MQL) and cryogenic gas was designed and the shape optimization was performed by using computational fluid dynamics(CFD) and design of experiment(DOE). Performance verification was performed for the designed nozzle. The diameter of the sprayed fluid at a distance of 30 mm from the nozzle was analyzed to be 21 mm. It was also analyzed to lower the aerosol temperature to about 260~270K.

Web based CFD Simulation Service Improvement and Utilization (웹기반 열유체 시뮬레이션 서비스의 개선 및 활용)

  • Jung, Young Jin;Jin, Du-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1160-1167
    • /
    • 2013
  • Web based simulation service is utilized to computationally analyze various phenomena in real world according to the progress of network and computing technology. In this paper, we present an improvement and utilization of e-AIRS (e-Science Aerospace Integrated Research System). e-AIRS, has been utilized to support web based CFD simulation service since 2008. has some problems such as stable system, pre processing, post processing. To solver this problem, we improved e-AIRS such as distributed service processing, personal simulation job assignment control, and faster data loading. After improvement, although users increase from 110 to 606, the priority of user requirements is changed from stable system to pre/post processor. User requirements and statistics about e-AIRS simulation service for each semester is analyzed to support more stable and comfortable service.

Development of the Air-Conditioning Unit for Workspace Integrated Units (사무공간의 통합유니트 구축을 위한 공조유니트 도출에 관한 연구)

  • Kim Ji-Hyun;Kim Sun-Sook;Yang In-Ho;Kim Kwang-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.669-680
    • /
    • 2005
  • The purpose of this study is to develop the air-conditioning unit combined with the lighting unit for workspace and to supply its performance data at architectural design stage. The air-conditioning unit is one of the components of a workspace integrated unit, which can be defined as the planning unit satisfying the environmental comfort criteria of workspace. Air-conditioning diffusers are classified according to throws and features by literature review and case study. Then diffusers are combined with the lighting unit. Through the CFD simulation, the thermal performance of each unit was evaluated and finally various air-conditioning units combined with the lighting units were developed.

An Analysis Study for Thermal Design of ISG (Integrated Starter & Generator) for Hybrid Electric Vehicle (하이브리드 차량용 ISG(Integrated Starter Generator)의 방열 설계를 위한 해석적 연구)

  • Kim, Dae Geon;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.120-127
    • /
    • 2013
  • Hybrid electric vehicles have applied electric parts for saving fuel consumption and reducing levels of environmental pollution. Electrification of automobiles is indispensable for entering into global market because of enhanced environment restriction. ISG (Integrated Starter & Generator) system is one of main electric parts and can improve fuel efficiency more than other components by using Idle Stop & Go function and regenerative braking system. However, if ISG motor and inverter work under the continuously high load condition, it will make them the decrease of performance and durability. So the ISG motor and inverter need to properly design the cooling system of them. In this study, we suggested the enhancement points by modifying the thermal design of ISG motor and then confirmed the improvement of the cooling performance.

A Study on the Characteristics of Flow and Reactive Pollutants' Dispersion in Step-up Street Canyons Using a CFD Model (CFD 모델을 이용한 체승 도시협곡의 흐름과 반응성 대기오염물질 확산 특성 연구)

  • Kim, Eun-Ryoung;Park, Rokjin J.;Lee, Dae-Geun;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.473-482
    • /
    • 2015
  • In this study, street canyons with a higher downwind building (so called, step-up street canyons) are considered for understanding characteristics of flow and reactive pollutants' dispersion as a basic step to understand the characteristics in wider urban areas. This study used a CFD_NIMR_SNU coupled to a chemistry module just including simple $NO_X-O_3$ photochemical reactions. First, flow characteristics are analyzed in step-up street canyons with four aspect ratios (0.33, 0.47, 0.6, 0.73) defined as ratios of upwind building heights to downwind building height. The CFD_NIMR_SNU reproduced very well the main features (that is, vortices in the street canyons) which appeared in the wind-tunnel experiment. Wind speed within the street canyons became weak as the aspect ratio increased, because volume of flow incoming over the upwind building decreased. For each step-up street canyon, chemistry transport model was integrated up to 3600 s with the time step of 0.5 s. The distribution patterns of $NO_X$ and $O_3$ were largely dependent on the mean flow patterns, however, $NO_X$ and $O_3$ concentrations were partly affected by photochemical reactions. $O_3$ concentration near the upwind lower region of the street canyons was much lower than background concentration, because there was much reduction in $O_3$ concentration due to NO titration there. Total amount of $NO_X$ in the street canyons increased with the aspect ratio, resulting from the decrease of mean wind intensity.

A Numerical Study on the Performance Evaluation of the Vacuum Pump for Waste Treatment (수치해석을 이용한 오물 처리용 진공펌프의 성능평가)

  • Lee, Him-Chan;Kim, Joon-Hyung;Yoon, Joon-Yong;Kim, Chang-Jo;Choi, Young-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.53-58
    • /
    • 2014
  • Vacuum pump transfers waste that is pulverized by integrated macerator. For this reason, unlike ordinary pump systems, there is a rotating macerator ahead of impeller for pulverizing. It is hard to predict numerical solution because area of Inlet flow path changes according to the rotation angle of the integrated macerator. So, in this study, the verification of performance evaluation method of Marine vacuum pump were numerically studied by commercial ANSYS CFX 13.0 software. We select a model of performance evaluation for study, and we analyze change of inlet flow path of integrated macerator according to rotation angle. We generate 5 model sets according to rotation angle of the integrated macerator. And we evaluate their performance by numerical analysis. Then, we analyze internal flow field and performance according to rotation angle of the integrated macerator based on numerical analysis result. In addition, we compared with experimental data for validity of numerical result by using steady state analysis.

Development of an Automated Integrated Design System for Gerotor Pumps with Multiple Profiles(Ellipse and Involute) (타원.인벌루트 조합 형상을 갖는 지로터 펌프의 통합적 설계 자동화 시스템 개발)

  • Moon, Hyun-Ki;Jung, Sung-Yuen;Bae, Jun-Ho;Chang, Young-June;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.67-77
    • /
    • 2010
  • An internal lobe pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular, the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobe with elliptical and involute shapes, while the inner rotor profile is determined as conjugate to the other. And the integrated design system which is composed of three main modules has been developed through AutoLISP under AutoCAD circumstance plus CFD-ACE+. It generates new lobe profile and calculates automatically the flow rate and flow rate irregularity according to the lobe profile generated. CFD simulation results show trends similar to those carried out in experiments, and a quantitative comparison is presented. Results obtained from the automotive integrated design system enable the designer and manufacturer of oil pump to be more efficient in this field.

Experiments and Numerical Validation for FPSO Bow Water Shipping (FPSO 선수부 갑판침수 현상에 대한 실험 및 수치적 검증)

  • Lim, Ho-Jeong;Lee, Hyun-Ho;Park, Sun-Ho;Rhee, Shin-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.6-13
    • /
    • 2012
  • As ocean resources in shallow water areas are being exhausted, deep sea development is becoming common these days. Therefore floating type offshore structures are more competitive than fixed type structures, and FPSO is the most popular one these days. FPSO's are generally operated in a specific region and positioned to meet mostly head or bow waves in order to reduce roll motions. However this makes these vessels more vulnerable to green water around the bow region, and therefore the bow shape must be properly designed to mitigate green water damage. In the present study, experimental results for three different FPSO bow shapes in regular head waves were analyzed and compared to each other. Also CFD computations were carried out as a sample validation case for the database built for CFD code validation.