• 제목/요약/키워드: Integrated CFD

검색결과 104건 처리시간 0.026초

BARAM: 전산유체 해석을 위한 가상풍동 시스템 (BARAM: VIRTUAL WIND-TUNNEL SYSTEM FOR CFD SIMULATION)

  • 김민아;이중연;구기범;허영주;이세훈;박수형;김규홍;조금원
    • 한국전산유체공학회지
    • /
    • 제20권4호
    • /
    • pp.28-35
    • /
    • 2015
  • BARAM system that means 'wind' in Korean has been established as a virtual wind tunnel system for aircraft design. Its aim is to provide researchers with easy-to-use, production-level environment for all stages of CFD simulation. To cope with this goal an integrated environment with a set of CFD solvers is developed and coupled with an highly-efficient visualization software. BARAM has three improvements comparing with previous CFD simulation environments. First, it provides a new automatic mesh generation method for structured and unstructured grid. Second, it also provides real-time visualization for massive CFD data set. Third, it includes more high-fidelity CFD solvers than commercial solvers.

공력-구조-RF 스텔스 통합 전산해석 시스템 연구 (AN INTEGRATED SYSTEM FOR COMPUTATIONAL AERODYNAMIC, STRUCTURAL AND RF STEALTH ANALYSIS)

  • 박경린;양영록;정성기;명노신;조태환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.78-82
    • /
    • 2010
  • An integrated multi-disciplinary design system plays a critical role in the preliminary design of an aircraft. In this paper such system is developed for the multi-disciplinary computation and design; aerodynamics elasticity, and radio frequency stealth. Common data base of geometry and structured grids is generated and used for aerodynamic, structural and eletromagnetics analysis. The Navier-Stokes CFD, FEM, and CEM technique are used for aerodynamic, structural, and RF stealth computations respectively.

  • PDF

Navier-Stokes equations을 활용한 익형의 점성경계층 특성분석 (Analysis of Airfoil Boundary Layer Characteristics with Navier-Stokes Equations)

  • 김철완
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.199-201
    • /
    • 2011
  • NACA0012 Airfoil was simulated with Computational Fluid Dynamics(CFD) and the aerodynamic characteristics was analyzed for various far-field boundary distances ranging from 10 airfoil chord to 50 chord Drag coefficient distribution was dependent on the far-field distance and circulation, integrated along the loop inside the flow region, was also dependent. It was turned out that some corrections based on the circulation should be added to the far-field boundary condition for accurate airfoil simulation.

  • PDF

주거건물용 이중외피 통합형 전기집진기의 미세먼지 집진성능 수치해석 평가 (Numerical Study of Particle Collection Performance of Electrostatic Precipitator Integrated with Double Skin Façade in Residential Buildings)

  • 엄예슬;최동희;강동화
    • 대한건축학회논문집:구조계
    • /
    • 제34권12호
    • /
    • pp.73-82
    • /
    • 2018
  • The objective of this study was to evaluate particle collection performance of electrostatic precipitator (ESP) integrated with double skin façade in naturally ventilated residential buildings using numerical method. To evaluate the efficiency, computational fluid dynamics (CFD) simulation based on electric potential and Lagrangian method was applied. The CFD model was validated by comparing the simulated results with the experimental data including thermal characteristic of double skin façade (DSF) and particle removal characteristic of electrostatic precipitator. The validation results showed that the root mean square error (RMSE) between predicted values and measured values of velocity and temperature in intermediate space of DSF was 1.2%. The adequacy of ion space charge density and turbulent model were determined. The RMSE between predicted values and measured values of collection efficiency of ESP was 9.2%. In addition, the case study was performed to present the application of the numerical method based on validation results of ESP integrated with façade.

움직이는 격자계를 이용한 유도탄의 비정상 분리 유동해석 (Unsteady Separation Simulation of Missile by Using Moving Grid)

  • 강경태;이복직;안창수
    • 한국군사과학기술학회지
    • /
    • 제10권2호
    • /
    • pp.47-52
    • /
    • 2007
  • Missile staging and airframe separation simulation were performed by using a numerical technique for simulating the dynamics of multiple moving bodies. A 6DOF model is fully integrated into the CFD solution procedure to determine the body dynamics. Chimera grid technique offered efficient CFD simulation of multiple moving bodies. Through this simulation the safety of deployed staging and airframe separation mechanism was verified.

Conceptual design of buildings subjected to wind load by using topology optimization

  • Tang, Jiwu;Xie, Yi Min;Felicetti, Peter
    • Wind and Structures
    • /
    • 제18권1호
    • /
    • pp.21-35
    • /
    • 2014
  • The latest developments in topology optimization are integrated with Computational Fluid Dynamics (CFD) for the conceptual design of building structures. The wind load on a building is simulated using CFD, and the structural response of the building is obtained from finite element analysis under the wind load obtained. Multiple wind directions are simulated within a single fluid domain by simply expanding the simulation domain. The bi-directional evolutionary structural optimization (BESO) algorithm with a scheme of material interpolation is extended for an automatic building topology optimization considering multiple wind loading cases. The proposed approach is demonstrated by a series of examples of optimum topology design of perimeter bracing systems of high-rise building structures.

CFD 해석을 통한 4종의 건식 분류층 석탄가스화기 설계개념 비교 (Comparison of Design Concepts for Four Different Entrained-Bed Coal Gasifier Types with CFD Analysis)

  • 윤용승;주지선;이승종
    • 공업화학
    • /
    • 제22권5호
    • /
    • pp.566-574
    • /
    • 2011
  • 석탄가스화기는 석탄가스화복합발전과 석탄간접액화 공정에서 고효율을 얻기 위한 중요한 설비 중 하나이다. 현재 여러 종류의 석탄가스화기가 성공적으로 사용되고 있지만, 간단하면서도 신뢰도를 높일 수 있는 다양한 설계 변경이 가능하다. 건식 분류층 가스화기 4종류의 형태를 제시하고 이들을 체류시간, 가스화기 출구 합성가스의 온도, 합성가스 조성을 중점으로 비교하였다. 설계개념이 적정한지를 우선 파악하고자 반응을 배제한(cold-flow) CFD 해석을 먼저 수행하였고, 실제 가스화기 조건을 반영한 화학반응이 고려된(hot-flow) 해석을 수행하여 비교하였다. 가스화기 설계에 CFD를 적용하는 데는 슬랙의 거동과 슬랙탭 설계 등 측면에서 제한적이기는 하지만, 다양한 설계개념 중에서 가능성이 높은 가스화기 형태의 범위를 좁히는 데 매우 유용하게 사용될 수 있다.

미끄럼 격자를 이용한 HAWT 시스템 주위의 비정상 유동장 해석 (Unsteady Flow Analysis Around a HAWT System Using Sliding Mesh Technique)

  • 이치훈;김상곤;조창열
    • 한국항공우주학회지
    • /
    • 제39권3호
    • /
    • pp.201-209
    • /
    • 2011
  • NREL Phase VI 수평축 풍력터빈 주위의 3차원 유동에 대하여 미끄럼 격자 기법을 사용한 비정상 RANS 해석을 수행하였다. 블레이드/타워의 간섭영향을 해석하기 위하여 로터단일과 로터/타워/나셀의 2가지 해석 모델을 구축하였다. 로터/타워/나셀의 해석 결과를 NREL의 실험데이터와 비교하여 CFD 해석모델의 유용성을 확인하였다. 두 모델에 의한 해석 결과의 비교를 통하여 비록 상풍형 풍력터빈으로서 작기는 하지만 타워/나셀의 영향이 확실히 나타나는 것을 확인하였다. 다른 가시화 결과와 토크를 포함한 적분 공력하중 등도 구축한 CFD 모델의 비정상 유동해석 능력이 효과적임을 보여주고 있다.

전산유체역학모형에 근거한 미기상 바람환경 영향평가 시스템 (An Environmental Impact Assessment System for Microscale Winds Based on a Computational Fluid Dynamics Model)

  • 김규랑;구해정;권태헌;최영진
    • 환경영향평가
    • /
    • 제20권3호
    • /
    • pp.337-348
    • /
    • 2011
  • Urban environmental problem became one of major issues during its urbanization processes. Environmental impacts are assessed during recent urban planning and development. Though the environmental impact assessment considers meteorological impact as a minor component, changes in wind environment during development can largely affect the distribution pattern of air temperature, humidity, and pollutants. Impact assessment of local wind is, therefore, a major element for impact assessment prior to any other meteorological impact assessment. Computational Fluid Dynamics (CFD) models are utilized in various fields such as in wind field assessment during a construction of a new building and in post analysis of a fire event over a mountain. CFD models require specially formatted input data and produce specific output files, which can be analyzed using special programs. CFD's huge requirement in computing power is another hurdle in practical use. In this study, a CFD model and related software processors were automated and integrated as a microscale wind environmental impact assessment system. A supercomputer system was used to reduce the running hours of the model. Input data processor ingests development plans in CAD or GIS formatted files and produces input data files for the CFD model. Output data processor produces various analytical graphs upon user requests. The system was used in assessing the impacts of a new building near an observatory on wind fields and showed the changes by the construction visually and quantitatively. The microscale wind assessment system will evolve, of course, incorporating new improvement of the models and processors. Nevertheless the framework suggested here can be utilized as a basic system for the assessment.

철도 방음벽의 형상에 따른 태양복사 에너지 흡수 특성 연구 (Effect of Railway Noise Barrier Shape on Solar Radiation Energy Absorption)

  • 정찬호;이진운;장용준;김주헌;유홍선;이성혁
    • 한국분무공학회지
    • /
    • 제18권4호
    • /
    • pp.209-214
    • /
    • 2013
  • The present study aims to determine the optimized shape for the maximum electric energy production of building integrated photovoltaic system (BIPV) noise barrier through numerical analysis. The shape of BIPV noise barrier is one of the important factors in determining angle difference between direction vector of the sun and normal vector of the sound barrier surface. This study simulated numerically the flow and thermal fields for different angles in the range from $90^{\circ}$ to $180^{\circ}$, and from the results, the amount of isolation onto noise barrier surface was estimated along the angle between ground and top side of noise barrier. The commercial CFD code (Fluent V. 13.0) was used for calculation. It was found that the maximum amount of insolation per unit area was 19.6 MJ for $105^{\circ}$ case during a day in summer and was estimated 12.4 MJ in $150^{\circ}$ case during a day in winter. The results of the summer and winter cases showed the different tendency and this result would be useful in determining the appropriate shape of noise barrier which can be mounted under various circumstances.