• 제목/요약/키워드: Integral optimum regulator

검색결과 4건 처리시간 0.017초

PRBS 시스템 규명 기법 적용 멀티 열펌프의 다중입출력 제어특성에 관한 실험적 연구 (Experimental Study on the MIMO Control Algorithm of a Multi-Heat Pump Based on PRBS Identification Scheme)

  • 최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권2호
    • /
    • pp.16-24
    • /
    • 2013
  • A multi-heat pump provides the benefits of comfort, energy conservation and easy maintenance. Recently, the multi-heat pump has been widely employed in small and medium-sized buildings. However, the control algorithm of the multi-heat pump are limited in the open literature due to complicated operating conditions. In this study, the MIMO control algorithm using integral optimum regulator was designed and the control performance of it was analyzed. In addition, system model of the control plant was developed by PRBS system identification scheme. The MIMO controller adopting the integral optimum regulator yielded satisfactory control performance results.

시스템 히트펌프의 용량조절 및 다변수 제어 특성에 관한 연구 (The Performance of Capacity Modulation and MIMO Control for System Heat Pump)

  • 송인식;주영주;정현준;강훈;김용찬;최종민
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.364-369
    • /
    • 2007
  • A system heat pump provides the benefits of comfort, energy conservation and easy maintenance. Recently, the system heat pump has been employed in small and medium-sized buildings. However, the performance data and control algorithm for system heat pump are limited in literature due to complicated system parameters and operating conditions. In the present study, the performance of a system heat pump with two indoor unit is measured by varying indoor loads, EEV opening, and compressor speed. In addition, the integral optimum regulator which includes MIMO control algorithm is proposed. The capacity modulation and optimum capacity for each indoor unit can be adjusted by utilizing the EEVs opening and compressor speed. The proposed scheme shows appropriate control performance at test conditions.

  • PDF

적분형 최적 레귤레이터 적용 시스템 히트펌프 제어 시뮬레이션 연구 (Numerical Simulation of a System Heat Pump Adopting an Integral Optimum Regulating Controller)

  • 김용찬;최종민
    • 설비공학논문집
    • /
    • 제25권7호
    • /
    • pp.398-405
    • /
    • 2013
  • Small and medium-size buildings employ a multi-distributed individual air-conditioning system that utilizes package air conditioners instead of centralized cooling systems, which can allow easier building management and maintenance, along with a diversification of facility use. Inverter driven system heat pumps have been developed to achieve not only an easy distribution control, allowing free combination of indoor units with different models and different capacities, but also wide applications to intelligent air conditioning. However, the control algorithms of the system heat pump are limited in the open literature, due to complicated operating conditions. In this paper, an inverter-driven system heat pump having two indoor units with electronic expansion valves (EEV) was simulated in the cooling mode. An integral optimum regulating controller employing the state space control method was also simulated, and applied to the system-heat pump system, to obtain efficient control of the MIMO (multi input multi output) system. The simulation model for the controller yielded satisfactory prediction results. The new control model can be successfully utilized as a basic tool in controller design.

Optimum design of a sliding mode control for seismic mitigation of structures equipped with active tuned mass dampers

  • Eliasi, Hussein;Yazdani, Hessam;Khatibinia, Mohsen;Mahmoudi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.633-645
    • /
    • 2022
  • The active tuned mass damper (ATMD) is an efficient and reliable structural control system for mitigating the dynamic response of structures. The inertial force that an ATMD exerts on a structure to attenuate its otherwise large kinetic energy and undesirable vibrations and displacements is proportional to its excursion. Achieving a balance between the inertial force and excursion requires a control law or feedback mechanism. This study presents a technique for the optimum design of a sliding mode controller (SMC) as the control law for ATMD-equipped structures subjected to earthquakes. The technique includes optimizing an SMC under an artificial earthquake followed by testing its performance under real earthquakes. The SMC of a real 11-story shear building is optimized to demonstrate the technique, and its performance in mitigating the displacements of the building under benchmark near- and far-fault earthquakes is compared against that of a few other techniques (proportional-integral-derivative [PID], linear-quadratic regulator [LQR], and fuzzy logic control [FLC]). Results indicate that the optimum SMC outperforms PID and LQR and exhibits performance comparable to that of FLC in reducing displacements.