• Title/Summary/Keyword: Integral imaging system

Search Result 103, Processing Time 0.034 seconds

Optical implementation of 3D image correlator using integral imaging technique (집적영상 기술을 이용한 3D 영상 상관기의 광학적 구현)

  • Piao, Yongri;Kim, Seok-Tae;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1659-1665
    • /
    • 2009
  • In this paper, we propose an implementation method of 3D image correlator using integral imaging technique. In the proposed method, elemental images of the reference and signal 3D objects are recorded by lenslet arrays and then reference and signal output plane images with high resolution are optically reconstructed on the output plane by displaying these elemental images into a display panel. Through cross-correlations between the reconstructed reference and the single plane images, 3D object recognition is performed. The proposed method can provide a precise 3D object recognition by using the high-resolution output plane images compared with the previous methods and implement all-optical structure for real-time 3D object recognition system. To show the feasibility of the proposed method, optical experiments are carried out and the results are presented.

Efficiency Comparison of Radiological Work in the integration environment of PACS and OCS (PACS와 OCS연동으로 인한 방사선사 업무의 효율성 비교)

  • Yoo, Eun-Jeong;Kang, Hye-Keong;Kim, Kyeong-Joon;Ahn, Soo-Hyeon;Ahn, Tae-Hun;Lee, Ki-Hyeob;Choi, Hong-Joon;Kim, Seung-Sik
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.5 no.1
    • /
    • pp.86-92
    • /
    • 2002
  • Information concerning a patient visit is to be sent from the OCS(Order Communication System) to the PACS(Picture archiving and Communication System) and when the image acquisition is completed, information regarding the procedures also actually preformed should be sent back to the OCS. It should be possible to present related medical information from the OCS at the same image workstation in a coherent way with the images in the PACS, Examples of the related medical information are: the report of a diagnostic image procedure, data on medication, laboratory results, admission and discharge letters, and surgery reports, because we could maximize the efficiency of Radiological Work, like decrease examination time and human mistakes, though the integration of PACS and OCS, Therefore, We research some hospitals to find integral lists of PACS and OCS but there are no sufficient ingredients. Further, the percentage of Integral lists of PACS and OCS is different in all hospitals because there is no such standard yet like HL7(Healthcare Level 7) and DICOM(Digital Imaging and Communications in Medicine). Accordingly, if all hospital would follow national standard like HL7 and DICOM, the integration of OCS and PACS would be efficient but in this situation radiological technician should take part in construction integration system of PACS and OCS positively, so we could improve efficiency of radiological work and our status.

  • PDF

Color Compensation of an Underwater Imaging System Using Electromagnetic Wave Propagation

  • Inoue, Kotaro;Lee, Min-Chul;Kim, Cheol-Su;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.3
    • /
    • pp.200-206
    • /
    • 2016
  • Images can be obtained by collecting rays from objects. The characteristics of electromagnetic wave propagation depend on the medium. In particular, in an underwater imaging system, the interface between air and water must be considered. Further, reflection and transmission coefficients can be found by using electromagnetic theory. Because of the fact that the values of these coefficients differ according to the media, the recorded light intensities will change. A color image sensor has three different color channels. Therefore, the reflection and transmission coefficients have to be calculated individually. Thereafter, by using these coefficients, we can compensate for the color information of underwater objects. In this paper, we present a method to compensate for the color information of underwater objects by using electromagnetic wave propagation theory. To prove our method, we conducted optical experiments and evaluated the quality of the compensated image by a metric known as mean square error.

Full waveform inversion by objective functions with power and integral (지수 및 적분을 포함한 목적함수에 의한 파형역산)

  • Ha, Wan-Soo;Pyun, Suk-Joon;Shin, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.130-134
    • /
    • 2007
  • Classical full waveform inversion for velocity estimation defines the objective function as the $l^2$ -norm of differences between the modeled and the observed wavefields. Although widely used, the results of this method have been less than satisfactory. A moderate improvement of this method is to define the objective function as the $l^2$ -norm of differences between the logarithms of the modeled and observed wavefields. In this paper we propose new objective functions of waveform inversion. They produce better results in sub-salt imaging than those of the classical and the logarithmic objective functions. One objective function defines the residual as the difference between $L^{th}$ power of the modeled wavefields and that of the observed wavefields. Another defines the residual as the difference between the integral of the $L^{th}$ power of the modeled wavefields and that of the observed wavefields. We apply these new objective functions to the synthetic SEG/EAGE salt model, and show that our new waveform inversion algorithms provide more accurate results than those of the classical and logarithmic waveform inversion methods.

  • PDF

In vivo Imaging Biodistribution Profile of a New Macrocyclic Gadolinium Chelate as a Highly Stable Multifunctional MRI Contrast Agent

  • Sung, Bo Kyung;Jo, Yeong Woo;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.34-37
    • /
    • 2019
  • Gadolinium contrast agents (CAs) are integral components of clinical magnetic resonance imaging (MRI). However, safety concerns have arisen regarding the use of gadolinium CAs, due to their association with nephrogenic systemic fibrosis (NSF). Furthermore, recently the long-term retention of $Gd^{3+}-based$ CAs in brains patients with normal renal function raised another possible safety issue. The safety concerns of $Gd^{3+}-based$ CAs have been based on the ligand structure of $Gd^{3+}-based$ CAs, and findings that $Gd^{3+}-based$ CAs with linear ligand structures showed much higher incidences of NSF and brain retention of CAs than $Gd^{3+}-based$ CAs with macrocyclic ligand structure. In the current study, we report the in vivo biodistribution profile of a new highly stable multifunctional $Gd^{3+}-based$ CA, with macrocyclic ligand structure (HNP-2006). MR imaging using HNP-2006 demonstrated a significant contrast enhancement in many different organs. Furthermore, the contrast enhanced tumor imaging using HNP-2006 confirmed that this new macrocyclic CA can be used for detecting tumor in the central nervous system. Therefore, this new multifunctional HNP-2006 with macrocyclic ligand structure shows great promise for whole-body clinical application.

Three-dimensional display by using integral imaging system (집적결상계를 이용한 3차원 입체영상 표시기)

  • 신승호
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.236-237
    • /
    • 2003
  • 3차원 영상표시를 위한 방법은 여러 가지 방향에서 연구되어 왔다. 이중 홀로그램을 이용한 방법은 완벽한 3차원 영상을 표현할 수 있지만 스페클 잡음이 나타나고 시야각이 제한되며 단색 간섭성 광원을 사용해야하는 등의 문제점이 있어 실제 응용에 제한을 받고 있다. 이에 따라 최근 들어 쌍안 방식을 포함한 3차원 입체영상의 구현을 위한 다양한 연구가 활발하게 수행되고 있다. 렌즈 어레이를 이용한 집적결상의 방법도 그 중의 하나로 완벽한 색상의 구현, 연속적 시야각 확보, 단순한 광학계에서 구현가능 등의 장점이 있어 응용 가능성이 매우 높은 방법 중 하나로 평가되고 있다. (중략)

  • PDF

Development of an Imaging-DOAS System for 2-D Remote Sensing of Atmospheric Gases (대기가스오염물질의 이차원 원격 모니터링을 위한 Imaging-DOAS 개발)

  • Lee, Han-Lim;Lee, Chul-Kyu;Jung, Jin-Sang;Park, Jeong-Eun;Kim, Young-Joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.150-157
    • /
    • 2006
  • Spatially resolved remote identification and quantification of trace gases in the atmosphere is desirable in various fields of scientific research as well as in public security and industrial contexts. Environmental observations investigating causes, extent md consequences of air pollution are of fundamental interest. We present an Imaging-DOAS system, a ground based remote sensing instrument that allows spatially resolved mapping of atmospheric trace gases by a differential optical absorption spectroscopy(DOAS) with sun scattered light as the light source. A passive DOAS technique permits the identification and quantification of various gases, e.g., $NO_2,\;SO_2,\;and\;CH_2O$, from their differential absorption structures with high sensitivity. The Imaging-DOAS system consists of a scanning mirror, a focusing lens, a spectrometer, a 2-D CCD, ad the integral control software. An imaging spectrometer simultaneously acquires spectral information on the incident light in one spatial dimension(column) and sequentially scans the next spatial dimension with a motorized scanning mirror. The structure of the signal acquisition system is described in detail and the evaluation method is also briefly discussed. Applications of imaging of the $NO_2$ contents in the exhaust plumes from a power plant are presented.

A Study on Thermal Environmental Performance Test of the Rotary Compressor Stirling Cryocooler (회전압축기형 스털링 냉동기의 열환경 성능시험에 관한 연구)

  • Park, Seong-Je;Hong, Yong-Ju;Kim, Hyo-Bong;Kimm, Dae-Woong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1953-1958
    • /
    • 2007
  • This paper presents the results of a series of performance tests for the integral Stirling cryocooler. Infrared sensor systems incorporating cryocoolers are required to be qualified to the appropriate environmental specification. Integral Stirling cryocooler for thermal imaging system have matured to the stage of undergoing formal qualification test program. The thermal environmental test of the Stirling cryocooler is presented in this paper. We performed that low and high temperature keeping test from $-40^{\circ}C$ to $+71^{\circ}C$ and operating test at high and low temperature cyclic range with acceptance tests performed at scheduled intervals. Cooldown time to 80K and steady state input power at 80K were determined as a function of cooler components temperatures at the compressor, hot end and cold tip. Tests performed on this cooler have been successful with a measured cooldown time to 80K of less than 5 minutes 24seconds for $71^{\circ}C$ ambient temperature with input power of 11W

  • PDF