• Title/Summary/Keyword: Integral derivative controller

Search Result 182, Processing Time 0.021 seconds

Robust PID Controller Design for Speed Control of BLDC Motors (BLDC 모터 속도제어를 위한 견실 PID 제어기 설계)

  • 양승윤;김인수;전완수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.75-82
    • /
    • 2002
  • In this paper, the robust PID(Proportional-Integral-Derivative) controller was designed for speed control of BLDC motors using the frequency region model matching method. It was designed the robust PID controller satisfying disturbance attenuation and robust tracking performance using an H$\infty$ control method. The robust PID controller gains with the performances of the designed H$\infty$ controller are determined using the model matching method at frequency domain. Consequently, simulation results show that the proposed PID speed controller satisfies load torque disturbance attenuation and robust tracking performance, and this study has usefulness and applicability for the speed control system design of BLDC motors.

Development of the Digital Controller for High Precision Digital Power Supply (고정밀전원장치를 위한 디지털 제어기 개발)

  • Ha, K.M.;Lee, S.K.;Kim, Y.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.249-250
    • /
    • 2006
  • In this paper, hardware design and implementation of digital controller for the High Precision Digital Power Supply (HPDPS) based on Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA) is presented. Developed digital controller is composed of high resolution Digital Pulse Width Modulation (DPWM) and high resolution analog to digital converter circuit with anti-aliasing filter. And Digital Signal Processor (DSP) has the capability of a few micro-second calculation time for one feedback loop. 32-bit DSP and DPWM with 150[ps] step resolution is used to implement the HPDPS. Also 18-bit 2 mega sample per second ADC board is adopted for the developed digital controller. Also, hardware structure of the developed digital controller and experimental results of the first prototype board for HPDPS is described.

  • PDF

The Balancing Control of Moving Mass Rail by a Screw Jack and Damper (스크류 잭 및 댐퍼를 이용한 가동질량 레일의 평형제어)

  • Byun, J.H.;Choi, M.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.134-139
    • /
    • 2007
  • A delivery ship is used to handle the cargo with the crane to/from the ships. The ship is inclined in the direction of a cargo which is hung on a crane. In this case, a arc shaped rail should be in the equilibrium state to get good anti-rolling performance. In this study, a device and control algorithm are developed to take accurate and quick equilibrium of the rail. The device is composed of a hinged immovable support, screw jack and damper. And the control system is based on I-PD control law to consider of control input saturation and overshoot. The controller is composed of integral controller of feedforward path and proportional-derivative controller of feedback path. The parameters of controller is designed to follow the reference signal and to remove overshoot. The simulation results show that the desirable control performance is achieved.

  • PDF

PIDA Controller Design by CDM for Control of High-Order system (고차 시스템 제어를 위한 CDM 기법을 이용한 PIDA 제어기 설계)

  • 하달영;조용성;김승철;설재훈;임영도
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.353-360
    • /
    • 2000
  • A design of PIDA(Proportional-Integral-Derivative-Acceleration) controller for the third-order plant using the CDM(Coefficient Diagram Method) is presented. Using CDM, the closed-loop system with the designed PIDA controller can be made stable and satisfied both the transient and steady state response specifications without any adjustment. The effect of output step disturbance can also be lastly rejected. The fast step response of the controlled system can be achieved by reducing the equivalent time constant. The MATLABs simulation results show that the performances of the designed controlled system using CDM is better than the performance of the controlled system using PIDA controller designed by its own technique.

  • PDF

PID Learning Controller for Multivariable System with Dynamic Friction (동적 마찰이 있는 다변수 시스템에서의 PID 학습 제어)

  • Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.57-64
    • /
    • 2007
  • There have been many researches for optimal controllers in multivariable systems, and they generally use accurate linear models of the plant dynamics. Real systems, however, contain nonlinearities and high-order dynamics that may be difficult to model using conventional techniques. Therefore, it is necessary a PID gain tuning method without explicit modeling for the multivariable plant dynamics. The PID tuning method utilizes the sign of Jacobian and gradient descent techniques to iteratively reduce the error-related objective function. This paper, especially, focuses on the role of I-controller when there is a steady state error. However, it is not easy to tune I-gain unlike P- and D-gain because I-controller is mainly operated in the steady state. Simulations for an overhead crane system with dynamic friction show that the proposed PID-LC algorithm improves controller performance, even in the steady state error.

Paper Machine Industrial Analysis on Moisture Control Using BF-PSO Algorithm and Real Time Implementation Setup through Embedded Controller

  • Senthil Kumar, M.;Mahadevan, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.490-498
    • /
    • 2016
  • Proportional Integral Derivative (PID) controller tuning is an area of interest for researchers in many areas of science and engineering. This paper presents a new algorithm for PID controller tuning based on a combination of bacteria foraging and particle swarm optimization. BFO algorithm has recently emerged as a very powerful technique for real parameter optimization. To overcome delay in an optimization, combine the features of BFOA and PSO for tuning the PID controller. This new algorithm is proposed to combine both the algorithms to get better optimization values. The real time prototype model of paper machine is designed and controlled by using PIC microcontroller embedded with the programming in C language.

Frequency Response Based Multi-Objective Design Toolbox for PID Controller (PID 제어기의 주파수응답 기반 다목적 설계도구)

  • Jin, Lihua;Lim, Yeon-Soo;Kim, Young-Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1869-1875
    • /
    • 2008
  • Recently, a direct data-driven synthesis of a proportional integral derivative(PID) controller for a linear time-invariant(LTI) plant was presented in [1]. The authors showed that a complete set of PID controllers achieving robust performance and stability can be calculated directly from frequency response(FR) data without an identified transfer function model. However, it is not convenient to use this method because it requires complicated numerical algorithms to find specific frequencies which are solutions of an identical equation. The method also requires determination of the boundary of the controller's parameters from a finite set of FR data. In this paper, we present the development of a user-friendly Matlab toolbox based on the method in [1]. This toolbox allows us to obtain a complete three-dimensional(3-D) graphical solution of PID controllers that meet multiple design objectives. Several examples are given to demonstrate the use of the toolbox.

Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems (2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

Design of Robust FPID Controller and Control Characteristics for Load Frequency Control in Power System (전력시스템의 부하주파수제어를 위한 강인한 FPID제어기의 설계와 제어특성)

  • Moon, Young-Moon;Kim, Hae-Jae;Ahn, In-Mo;Joo, Seok-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.28-30
    • /
    • 1999
  • This paper proposes a robust FPID(Fuzzy Proportional Integral Derivative) controller for the LFC(load frequency control) of 2-area power system. The PID gain parameters of the proposed robust FPID controller are self-tuned by PSGM(Product Sum Gravity Method) which is very similiar to human's inference procedures. As the results of simulation, the proposed FPID controller against various load disturbances shows that it is superior to the conventional control techniques such as optimal, PID and fuzzy control in the response characteristics of frequency and tie line power flow.

  • PDF

An Expert System to Perform Controller Tuning Using Fuzzy Logic (애매 논리를 이용한 제어기 동조를 위한 전문가 시스템)

  • Jeon, Jeong-Yeol;Kim, Jong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.255-257
    • /
    • 1992
  • The expert system described in this article tunes a proportional-integral-derivative(PID) controller for a single-input single-ouput process. The expert system examines features of each transient response and the corresponding controller parameters. It determines a new set of controller gains to obtain a more desirable time reponse using fuzzy logic. This technique can be used to determine and implement a different set of PID gains for each operating regime and, once in steady state, the system can be used to find optimal parameters for load disturbance rejection.

  • PDF