• Title/Summary/Keyword: Integral calculation

Search Result 276, Processing Time 0.022 seconds

Analysis of added resistance of a ship advancing in waves (파랑중에서 전진하는 선박의 부가저항 해석)

  • 이호영;곽영기
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • This paper presents theoretical formulations and numerical computations for predicting first-and second-order hydrodynamic force on a ship advvancing in waves. The theoretical formulation leads to linearized radiation and diffration problems solving the three-dimensional Green function integral equations over the mean wetted body surface. Green function representing a translating and pulsating source potantial for infinite water depth is used. In order to solve integral equations for three dimentional flows using Green function efficiently, the Hoff's method is adopted for numerical calculation of the Green function. Based on the first-order solution, the mean seconder-order forces and moments are obtained by directly integrating second-order pressure over the mean wetted body surface. The calculated items are carried out for analyzing the seakeeping characteristics of Series 60. The calculated items are hydrodynamic coefficients, wave exciting forces, frequency response functions and addd resistance in waves.

  • PDF

Effect of the Vibration Modes on the Radiation Sound for Plate (강판의 진동모드를 고려한 방사음 예측에 관한 연구)

  • Kim Chang-Nam;Byun Young-Su;Kim Jeong-Man;Kim Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • In order to compute the radiated sound from a vibrating structure, the Rayleigh's integral equation has to be derived from the Helmholtz equation using Green's function. Generally, the surface velocity in the Rayleigh's integral equation uses the root mean square(rms) velocity. The calculation value is too large, because it's not considered cancelation. On the other hand. using the complex velocity, the sound pressure is calculated too small, because it considers that sound is perfectly canceled out. Therefore, this thesis proposes a correction factor(CF) which considers vibration modes and the method by which to calculate the radiating sound pressure. The theoretical results are compared with the experimental values, and the proposed method can be verified with confluence.

Calculation of Stress Intensity Factor in 2-D Using $J_k$-Integral for a Rectilinear Elastic Anisotropic Body (2차원 선형 탄성 이방성 재료에서 $J_k$-적분을 이용한 응력확대계수 계산)

  • An, Deuk-Man;Choi, Chang-Yeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.134-142
    • /
    • 2001
  • The integrals $J_k$(k=1,2) in the rectilinear anisotropis body in 2-D were determined using Lekhnitskii formalism. The relationship between $J_k$ and stress intensity factors are implified by the important equation between elastic compliance. The numerical evaluation of stress intensity factor for the single edge crack in mixed mode is determined by superposing known exact solutions.

  • PDF

The Calculation of Stress Intensity Factors in the Orthotropic Elastic Plate with the Cracked Circular-hole using a Contour Integral Method (경로적분법에 의한 원공크랙이 있는 직교이방성 탄성평판의 응력 확대계수 계산)

  • Kim, Jin-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.136-145
    • /
    • 2005
  • 특이응력해석을 위한 일반화된 가역상반일 경계적분식이 섬유강화복합재를 모형화한 직교 이방성 크랙평판의 수치해를 위하여 발전시켰다. 이 적분방정식은 평판경계에서의 탄성변위와 트랙션의 변수로 구성된 경계적분식의 형태로 하중이 없다는 두 크랙면의 경계조건과 유한의 탄성변형에너지의 개념에서 경계적분식에 필요한 특성해를 규정하고 대응되는 보조해를 계산하였다. 대칭모우드 I형의 중앙원공크랙평판 및 복합모우드형의 반원편측크랙 일단고정평판의 응력확대계수가 임의의 섬유방향각에 따라서 계산되었다.

Accurate Transmission Loss Allocation Algorithm Based on the Virtual Transaction Strategy: Comparison of Path-integral with Discrete Integral Methods

  • Min, Kyung-Il;Moon, Young-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.511-521
    • /
    • 2010
  • This paper presents a new algorithm to determine accurate bus-wise transmission loss allocation utilizing path-integrals dictated by the transaction strategy. For any transaction strategy, the total sum of the allocated transmission losses of all buses is equal to the actual loss given by the AC power-flow calculation considering the distributed slack. In this paper, the bus-wise allocation of the transmission loss is calculated by integrating the differential loss along a path determined by the transaction strategy. The proposed algorithm is also compared with Galiana's method, which is the well-known transmission loss allocation algorithm based on integration. The performance of the proposed algorithm is evaluated by case studies carried out on the WSCC 9-bus, IEEE 14-bus, New England 39-bus, and IEEE 118-bus systems. The simulation results show that the proposed algorithm is fast and accurate with a large step size.

3-D Magnetostatic Field Calculation by a Boundary Integral Equation Method using a Difference Field Concept (Difference field 개념의 경계적분방정식을 이용한 3차원 정자장 해석)

  • Park, Min-Cheol;Kim, Dong-Hun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.903-905
    • /
    • 2000
  • For an accurate analysis of three dimensional linear magnetostatic problems, a new boundary integral equation formulation is presented. This formulation adopts difference magnetic field concept and uses single layer magnetic surface charge as unknown. The proposed method is capable of eliminating numerical cancellation errors inside ferromagnetic materials. In additions, computing time and storage memory are reduced by 75% in comparison with the reduced and total scalar potential formulation. Two examples are given to show its efficiency and accuracy.

  • PDF

A History of the Common Logarithmic Table with Proportional Parts (상용로그표의 비례부분에 대한 역사적 고찰)

  • Kim, Tae Soo
    • Journal for History of Mathematics
    • /
    • v.27 no.6
    • /
    • pp.409-419
    • /
    • 2014
  • In school mathematics, the logarithmic function is defined as the inverse function of an exponential function. And the natural logarithm is defined by the integral of the fractional function 1/x. But historically, Napier had already used the concept of logarithm in 1614 before the use of exponential function or integral. The calculation of the logarithm was a hard work. So mathematicians with arithmetic ability made the tables of values of logarithms and people used the tables for the estimation of data. In this paper, we first take a look at the mathematicians and mathematical principles related to the appearance and the developments of the logarithmic tables. And then we deal with the confusions between mathematicians, raised by the estimation data which were known as proportional parts or mean differences in common logarithmic tables.

Computation of mixed-mode stress intensity factors in functionally graded materials by natural element method

  • Cho, J.R.
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.43-51
    • /
    • 2019
  • This paper is concerned with the numerical calculation of mixed-mode stress intensity factors (SIFs) of 2-D isotropic functionally graded materials (FGMs) by the natural element method (more exactly, Petrov-Galerkin NEM). The spatial variation of elastic modulus in non-homogeneous FGMs is reflected into the modified interaction integral ${\tilde{M}}^{(1,2)}$. The local NEM grid near the crack tip is refined, and the directly approximated strain and stress fields by PG-NEM are enhanced and smoothened by the patch recovery technique. Two numerical examples with the exponentially varying elastic modulus are taken to illustrate the proposed method. The mixed-mode SIFs are parametrically computed with respect to the exponent index in the elastic modulus and external loading and the crack angle and compared with the other reported results. It has been justified from the numerical results that the present method successfully and accurately calculates the mixed-mode stress intensity factors of 2-D non-homogeneous functionally graded materials.

π/2 Pulse Shaping via Inverse Scattering of Central Potentials

  • 이창재
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.188-192
    • /
    • 1996
  • It is shown that the inversion of the undamped Bloch equation for an amplitude-modulated broadband π/2 pulse can be precisely treated as an inverse scattering problem for a Schrodinger equation on the positive semiaxis. The pulse envelope is closely related to the central potential and asymptotically the wave function takes the form of a regular solution of the radial Schrodinger equation for s-wave scattering. An integral equation, which allows the calculation of the pulse amplitude (the potential) from the phase shift of the asymptotic solution, is derived. An exact analytical inversion of the integral equation shows that the detuning-independent π/2 pulse amplitude is given by a delta function. The equation also provides a means to calculate numerically approximate π/2 pulses for broadband excitation.

An Implementation of Knowledge-based BIM System for Representing Design Knowledge on Massing Calculation in Architectural Pre-Design Phase (건축기획 매스 규모산정의 설계지식 재현을 위한 지식기반 BIM 시스템 구현)

  • Lee, Byung-Soo;Ji, Seung-Yeul;Jun, Han-Jong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.3
    • /
    • pp.252-266
    • /
    • 2016
  • An architectural pre-design, which is conducted prior to the architecture design, supports fundamental configuration during the entire AEC project by predicting the cost, demand, etc., of the building, and is therefore gaining importance. In particular, the massing calculation of the pre-design phase should be prioritized, as it is fundamental to architectural outline. However, most architects depend on only their experience and intuition while conceptualizing an integrated framework of design conditions, including the building code and requirements for the massing calculation of the object. Therefore, many difficulties arise in terms of performing appropriate tasks. Thus, the purpose of this study is to implement a knowledge-based BIM for explicitly representing the design knowledge, which is the basis of decision making for an architect while performing the massing calculation. In particular, the 3D knowledge relevant to a project can be provided and accumulated in the massing calculation by the BIM system; this facilitates an integral understanding. Consequently, the approximate result of massing calculation in 3D BIM environment, through both the knowledge-based BIM template and plug-in, can be swiftly provided to the architect. In addition, the architect can invent various alternatives, estimate resulting costs, and reuse the accumulated knowledge in future BIM design processes.