• 제목/요약/키워드: Integral Image

검색결과 332건 처리시간 0.035초

Reference Functions for Synthesis and Analysis of Multiview and Integral Images

  • Saveljev, Vladimir;Kim, Sung-Kyu
    • Journal of the Optical Society of Korea
    • /
    • 제17권2호
    • /
    • pp.148-161
    • /
    • 2013
  • We propose one- and two-dimensional reference functions for processing of integral/multiview imaging. The functions provide the synthesis/analysis of the integral image by distance, as an alternative to the composition/decomposition by view images (directions). The synthesized image was observed experimentally. In analysis confirmed by simulation in a qualitative sense, the distance was obtained by convolution of the integral image with the reference functions.

메모리 크기에 효율적인 적분영상 하드웨어 설계 연구 (A Study of Integral Image Hardware Design for Memory Size Efficiency)

  • 이수현;정용진
    • 전자공학회논문지
    • /
    • 제51권9호
    • /
    • pp.75-81
    • /
    • 2014
  • 적분영상은 입력영상의 픽셀 값을 기준좌표부터 순차적으로 누적하여 만든 영상으로, Haar-like features와 같은 네모난 박스 모양의 필터 연산을 효율적으로 처리하기 위하여 사용된다. 그러나 적분영상은 입력영상보다 3배 이상 많은 메모리를 소모하기 때문에, 메모리 자원이 제한적인 하드웨어 설계 환경에서는 사용이 어렵다. 본 논문에서는 효율적인 메모리 사용을 위한 적분영상 하드웨어 설계 방법을 제안한다. 해당 방법은 적분영상 이외에 세로적분영상과 가로적분영상을 생성하고, 입력영상을 재사용 하는 방법을 사용한다. 그리고 박스 필터의 크기에 따라 modulo 연산을 적용하여 적분영상의 데이터 크기를 줄이는 방법을 함께 적용하였다. 적분 영상 데이터를 읽기 위해 나누어진 영상 데이터를 다시 덧셈해야하는 연산 오버헤드가 발생하지만, 4개의 데이터를 단순히 더하는 연산이므로 병렬처리가 가능한 하드웨어 환경에서는 큰 영향을 미치지 않는다. Xilinx사의 Virtex5-LX330T를 대상으로 실험한 결과 $640{\times}480$ 크기의 8bit gray-scale 입력영상에서 최대 $32{\times}32$ 크기의 필터사용을 기준으로 50%의 적분영상 메모리를 감소시킬 수 있다.

Analysis of Off-axis Integral Floating System Using Concave Mirror

  • Kim, Young Min;Jung, Kwang-Mo;Min, Sung-Wook
    • Journal of the Optical Society of Korea
    • /
    • 제16권3호
    • /
    • pp.270-276
    • /
    • 2012
  • An off-axis integral floating system using a concave mirror is analyzed to resolve the image distortion incurred by the off-axis optical arrangement. The concave mirror can be adopted as the floating device to improve the optical efficiency. The image distortion due to the tilting axis of the concave mirror needs to be analyzed precisely to generate the pre-distortion image. In this paper, we calculate the image deformation in the off-axis structure of the concave mirror using the geometrical optics. Using the calculation results, the compensated elemental image can be generated for the pre-distortion integrated image, which can be projected to the floating 3D image without image distortion. The basic experiments of the off-axis integral floating are presented to prove and verify the proposal.

집적영상 및 랜덤 픽셀-스크램블링 기법을 이용한 새로운 광 영상 암호화 (Novel Optical Image Encryption using Integral Unaging and Random Pixel-scrambling Schemes)

  • 박영일;김석태;김은수
    • 한국통신학회논문지
    • /
    • 제34권4C호
    • /
    • pp.380-387
    • /
    • 2009
  • 본 논문에서는 집적영상(integral imaging) 및 랜덤 픽셀-스크램블링(random pixel-scrambling) 기법을 이용한 새로운 광 영상 암호화(optical image encryption) 방법을 제안하였다. 즉, 제안된 방법의 부호화 과정에서는 먼저 입력영상을 여러 개의 작은 크기의 블록으로 나누어 픽셀-스크램블링을 한 다음 집적 영상 기술을 이용하여 요소영상(elemental image)을 생성하고 이 영상의 안정성을 위하여 2차 픽셀-스크램블링을 수행하여 최종 암호화된 영상을 얻게 된다. 그리고 복호화 과정에서는 암호화된 영상에 광학적인 집적 영상 복원 기법과 역 픽셀-스크램블링 방법을 사용하여 최종적으로 원 영상을 복원하게 된다. 새로이 제안된 광 영상 암호화 기법의 잡음 첨가 및 크로핑과 같은 데이터 손실에 대한 강인성을 실험을 통해 분석하고 그 결과를 제시하였다.

Comparisons of Object Recognition Performance with 3D Photon Counting & Gray Scale Images

  • Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.388-394
    • /
    • 2010
  • In this paper the object recognition performance of a photon counting integral imaging system is quantitatively compared with that of a conventional gray scale imaging system. For 3D imaging of objects with a small number of photons, the elemental image set of a 3D scene is obtained using the integral imaging set up. We assume that the elemental image detection follows a Poisson distribution. Computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator are applied to the photon counting elemental image set in order to reconstruct the original 3D scene. To evaluate the photon counting object recognition performance, the normalized correlation peaks between the reconstructed 3D scenes are calculated for the varied and fixed total number of photons in the reconstructed sectional image changing the total number of image channels in the integral imaging system. It is quantitatively illustrated that the recognition performance of the photon counting integral imaging system can be similar to that of a conventional gray scale imaging system as the number of image viewing channels in the photon counting integral imaging (PCII) system is increased up to the threshold point. Also, we present experiments to find the threshold point on the total number of image channels in the PCII system which can guarantee a comparable recognition performance with a gray scale imaging system. To the best of our knowledge, this is the first report on comparisons of object recognition performance with 3D photon counting & gray scale images.

Transformations and Their Analysis from a RGBD Image to Elemental Image Array for 3D Integral Imaging and Coding

  • Yoo, Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2273-2286
    • /
    • 2018
  • This paper describes transformations between elemental image arrays and a RGBD image for three-dimensional integral imaging and transmitting systems. Two transformations are introduced and analyzed in the proposed method. Normally, a RGBD image is utilized in efficient 3D data transmission although 3D imaging and display is restricted. Thus, a pixel-to-pixel mapping is required to obtain an elemental image array from a RGBD image. However, transformations and their analysis have little attention in computational integral imaging and transmission. Thus, in this paper, we introduce two different mapping methods that are called as the forward and backward mapping methods. Also, two mappings are analyzed and compared in terms of complexity and visual quality. In addition, a special condition, named as the hole-free condition in this paper, is proposed to understand the methods analytically. To verify our analysis, we carry out experiments for test images and the results indicate that the proposed methods and their analysis work in terms of the computational cost and visual quality.

Design and Implementation of High-Resolution Integral Imaging Display System using Expanded Depth Image

  • Song, Min-Ho;Lim, Byung-Muk;Ryu, Ga-A;Ha, Jong-Sung;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • 제14권3호
    • /
    • pp.1-6
    • /
    • 2018
  • For 3D display applications, auto-stereoscopic display methods that can provide 3D images without glasses have been actively developed. This paper is concerned with developing a display system for elemental images of real space using integral imaging. Unlike the conventional method, which reduces a color image to the level as much as a generated depth image does, we have minimized original color image data loss by generating an enlarged depth image with interpolation methods. Our method was efficiently implemented by applying a GPU parallel processing technique with OpenCL to rapidly generate a large amount of elemental image data. We also obtained experimental results for displaying higher quality integral imaging rather than one generated by previous methods.

Numerical Reconstruction and Pattern Recognition using Integral Imaging

  • Yeom, Seo-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1131-1134
    • /
    • 2008
  • In this invited paper, numerical reconstruction and pattern recognition using integral imaging are overviewed. The computational integral imaging method reconstructs three-dimensional information at arbitrary depth-levels. Photon-counting nonlinear matched filtering combined with the computational reconstruction provides promising results for the application of low-light level recognition.

  • PDF

Contour Integral Method for Crack Detection

  • Kim, Woo-Jae;Kim, No-Nyu;Yang, Seung-Yong
    • 비파괴검사학회지
    • /
    • 제31권6호
    • /
    • pp.665-670
    • /
    • 2011
  • In this paper, a new approach to detect surface cracks from a noisy thermal image in the infrared thermography is presented using an holomorphic characteristic of temperature field in a thin plate under steady-state thermal condition. The holomorphic function for 2-D heat flow field in the plate was derived from Cauchy Riemann conditions to define a contour integral that varies according to the existence and strength of a singularity in the domain of integration. The contour integral at each point of thermal image eliminated the temperature variation due to heat conduction and suppressed the noise, so that its image emphasized and highlighted the singularity such as crack. This feature of holomorphic function was also investigated numerically using a simple thermal field in the thin plate satisfying the Laplace equation. The simulation results showed that the integral image selected and detected the crack embedded artificially in the plate very well in a noisy environment.

집적 영상법을 이용한 3차원 영상 정보 처리 (Three-dimensional image processing using integral imaging method)

  • 민성욱
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2005년도 하계학술발표회
    • /
    • pp.150-151
    • /
    • 2005
  • Integral imaging is one of the three-dimensional(3D) display methods, which is an autostereoscopic method. The integral imaging system can provide volumetric 3D image which has both vertical and horizontal parallaxes. The elemental image which is obtained in the pickup process by lens array has the 3D information of the object and can be used for the depth perception and the 3D correlation. Moreover, the elemental image which represents a cyber-space can be generated by computer process.

  • PDF