• Title/Summary/Keyword: Integer points

Search Result 79, Processing Time 0.023 seconds

Abdominal-Deformation Measurement for a Shape-Flexible Mannequin Using the 3D Digital Image Correlation

  • Liu, Huan;Hao, Kuangrong;Ding, Yongsheng
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.3
    • /
    • pp.79-91
    • /
    • 2017
  • In this paper, the abdominal-deformation measurement scheme is conducted on a shape-flexible mannequin using the DIC technique in a stereo-vision system. Firstly, during the integer-pixel displacement search, a novel fractal dimension based on an adaptive-ellipse subset area is developed to track an integer pixel between the reference and deformed images. Secondly, at the subpixel registration, a new mutual-learning adaptive particle swarm optimization (MLADPSO) algorithm is employed to locate the subpixel precisely. Dynamic adjustments of the particle flight velocities that are according to the deformation extent of each interest point are utilized for enhancing the accuracy of the subpixel registration. A test is performed on the abdominal-deformation measurement of the shape-flexible mannequin. The experiment results indicate that under the guarantee of its measurement accuracy without the cause of any loss, the time-consumption of the proposed scheme is significantly more efficient than that of the conventional method, particularly in the case of a large number of interest points.

Designing Refuse Collection Networks under Capacity and Maximum Allowable Distance Constraints

  • Kim, Ji-Su;Lee, Dong-Ho
    • Management Science and Financial Engineering
    • /
    • v.19 no.2
    • /
    • pp.19-29
    • /
    • 2013
  • Refuse collection network design, one of major decision problems in reverse logistics, is the problem of locating collection points and allocating refuses at demand points to the opened collection points. As an extension of the previous models, we consider capacity and maximum allowable distance constraints at each collection point. In particular, the maximum allowable distance constraint is additionally considered to avoid the impractical solutions in which collection points are located too closely. Also, the additional distance constraint represents the physical distance limit between collection and demand points. The objective is to minimize the sum of fixed costs to open collection points and variable costs to transport refuses from demand to collection points. After formulating the problem as an integer programming model, we suggest an optimal branch and bound algorithm that generates all feasible solutions by a simultaneous location and allocation method and curtails the dominated ones using the lower bounds developed using the relaxation technique. Also, due to the limited applications of the optimal algorithm, we suggest two heuristics. To test the performances of the algorithms, computational experiments were done on a number of test instances, and the results are reported.

Sub-pixel Motion Estimation Algorithm with Low Computation Complexity for H.264 Video Compression (H.264 동영상 압축을 위한 낮은 복잡도를 갖는 부 화소 단위에서의 움직임 추정)

  • Lee, Yun-Hwa;Shin, Hyun-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.639-642
    • /
    • 2005
  • Motion Estimation(ME) is an important part of video compression, because it requires a large amount of computation. Half-pixel and quarter-pixel motion estimation allows high video compression rates but it also has high computation complexity. In this paper we suggest a new and efficient motion estimation algorithm for half-pixel and quarter-pixel motion estimation using SAD values. In the method, an integer-pixel motion vector is found and then only three neighboring points of the integer-pixel motion vector is evaluated to find the half-pixel motion vector. The quarter-pixel motion vector is also found by using a similar method. Experimental results of our method shows 20% reduction in computation time, when compared with those of a conventional method, while producing same quality motion vectors.

  • PDF

A study on the integerized implementation of PCA Recognition Algorithm (PCA 인식 알고리즘의 정수화 구현에 관한 연구)

  • Youn, Sung-Hyuk;Kim, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.172-174
    • /
    • 2004
  • This paper proposes an integerized approach to solve PCA(Principal Component Analysis) feature extract procedure mainly used for the face recognition. A simple conversion to integer values has the risk to reduce the precision compared to that of the floating points operations. We integerize the PC variables by normalizing with the maximum of them, and show the efficiency of the proposed scheme by comparing the results to those of the float/double precisions. The integerized scheme is expected to be an efficient way for the real-time implementation of PCA's recognition stage, because integer operator is more desirable than floating point ones. Further research is to find a way to implement face detection and to measure the distances from the stored PCs for the full real-time face recognition.

  • PDF

A Fast Half Pixel Motion Estimation Method based on the Correlations between Integer pixel MVs and Half pixel MVs (정 화소 움직임 벡터와 반 화소 움직임 벡터의 상관성을 이용한 빠른 반 화소 움직임 추정 기법)

  • Yoon HyoSun;Lee GueeSang
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.131-136
    • /
    • 2005
  • Motion Estimation (ME) has been developed to remove redundant data contained in a sequence of image. And ME is an important part of video encoding systems, since it can significantly affect the qualify of an encoded sequences. Generally, ME consists of two stages, the integer pixel motion estimation and the half pixel motion estimation. Many methods have been developed to reduce the computational complexity at the integer pixel motion estimation. However, the studies are needed at the half pixel motion estimation to reduce the complexity. In this paper, a method based on the correlations between integer pixel motion vectors and half pixel motion vectors is proposed for the half pixel motion estimation. The proposed method has less computational complexity than the full half pixel search method (FHSM) that needs the bilinear interpolation of half pixels and examines nine half pixel points to the find the half pixel motion vector. Experimental results show that the speedup improvement of the proposed method over FHSM can be up to $2.5\~80$ times faster and the image quality degradation is about to $0.07\~0.69(dB)$.

Adaptive Search Range Decision for Accelerating GPU-based Integer-pel Motion Estimation in HEVC Encoders (HEVC 부호화기에서 GPU 기반 정수화소 움직임 추정을 고속화하기 위한 적응적인 탐색영역 결정 방법)

  • Kim, Sangmin;Lee, Dongkyu;Sim, Dong-Gyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.699-712
    • /
    • 2014
  • In this paper, we propose a new Adaptive Search Range (ASR) decision algorithm for accelerating GPU-based Integer-pel Motion Estimation (IME) of High Efficiency Video Coding (HEVC). For deciding the ASR, we classify a frame into two models using Motion Vector Differences (MVDs) then adaptively decide the search ranges of each model. In order to apply the proposed algorithm to the GPU-based ME process, starting points of the ME are decided using only temporal Motion Vectors (MVs). The CPU decides the ASR as well as the starting points and transfers them to the GPU. Then, the GPU performs the integer-pel ME. The proposed algorithm reduces the total encoding time by 37.9% with BD-rate increase of 1.1% and yields 951.2 times faster ME against the CPU-based anchor. In addition, the proposed algorithm achieves the time reduction of 57.5% in the ME running time with the negligible coding loss of 0.6%, compared with the simple GPU-based ME without ASR decision.

RELATIONSHIPS BETWEEN CUSP POINTS IN THE EXTENDED MODULAR GROUP AND FIBONACCI NUMBERS

  • Koruoglu, Ozden;Sarica, Sule Kaymak;Demir, Bilal;Kaymak, A. Furkan
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.569-579
    • /
    • 2019
  • Cusp (parabolic) points in the extended modular group ${\bar{\Gamma}}$ are basically the images of infinity under the group elements. This implies that the cusp points of ${\bar{\Gamma}}$ are just rational numbers and the set of cusp points is $Q_{\infty}=Q{\cup}\{{\infty}\}$.The Farey graph F is the graph whose set of vertices is $Q_{\infty}$ and whose edges join each pair of Farey neighbours. Each rational number x has an integer continued fraction expansion (ICF) $x=[b_1,{\cdots},b_n]$. We get a path from ${\infty}$ to x in F as $<{\infty},C_1,{\cdots},C_n>$ for each ICF. In this study, we investigate relationships between Fibonacci numbers, Farey graph, extended modular group and ICF. Also, we give a computer program that computes the geodesics, block forms and matrix represantations.

Batch Processing Algorithm for Moving k-Farthest Neighbor Queries in Road Networks (도로망에서 움직이는 k-최원접 이웃 질의를 위한 일괄 처리 알고리즘)

  • Cho, Hyung-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.223-224
    • /
    • 2021
  • Recently, k-farthest neighbor (kFN) queries have not as much attention as k-nearest neighbor (kNN) queries. Therefore, this study considers moving k-farthest neighbor (MkFN) queries for spatial network databases. Given a positive integer k, a moving query point q, and a set of data points P, MkFN queries can constantly retrieve k data points that are farthest from the query point q. The challenge with processing MkFN queries in spatial networks is to avoid unnecessary or superfluous distance calculations between the query and associated data points. This study proposes a batch processing algorithm, called MOFA, to enable efficient processing of MkFN queries in spatial networks. MOFA aims to avoid dispensable distance computations based on the clustering of both query and data points. Moreover, a time complexity analysis is presented to clarify the effect of the clustering method on the query processing time. Extensive experiments using real-world roadmaps demonstrated the efficiency and scalability of the MOFA when compared with a conventional solution.

  • PDF

THE INVARIANCE PRINCIPLE FOR LINEARLY POSITIVE QUADRANT DEPENDENT RANDOM FIELDS

  • Kim, Tae-Sung;Seo, Hye-Young
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.801-811
    • /
    • 1996
  • Let $Z^d$ denote the set of all d-tuples of integers$(d \geq 1, a positive integer)$. The points in $Z^d$ will be denoted by $\underline{m},\underline{n}$, etc., or sometime, when necessary, more explicitly by $(m_1, m_2, \cdots, m_d)$, $(n_1, n_2, \cdots, n_d)$ etc. $Z^d$ is partially ordered by stipulating $\underline{m} \underline{<}\underline{n} iff m_i \leq n_i$ for each i, $1 \leq i \leq d$.

  • PDF

Solution method of the uncapacitated facility location problem using GAMS and Benders' decomposition approach (저장능력이 무한대인 장소입지문제에 벤더즈 분해기법과 GAMS의 적용)

  • 이상진
    • Korean Management Science Review
    • /
    • v.12 no.2
    • /
    • pp.63-75
    • /
    • 1995
  • The uncapacitated facility location problem considered here is to determine facility location sites, minimizing the total cost of establishing facilities and serving customer demand points which require primary and back-up services. To solve this problem effectively, we propose two things in this study. First, we propose an idea of Benders' decomposition approach as a solution method of the problem. Second, we implement the problem on GAMS. Using GAMS (general Algebraic Modeling System) can utilize an mixed-integer programming solver such as ZOOM/XMP and provide a completely general automated implementation with a proposed solution method.

  • PDF