THE INVARIANCE PRINCIPLE FOR LINEARLY POSITIVE QUADRANT DEPENDENT RANDOM FIELDS

  • Published : 1996.11.01

Abstract

Let $Z^d$ denote the set of all d-tuples of integers$(d \geq 1, a positive integer)$. The points in $Z^d$ will be denoted by $\underline{m},\underline{n}$, etc., or sometime, when necessary, more explicitly by $(m_1, m_2, \cdots, m_d)$, $(n_1, n_2, \cdots, n_d)$ etc. $Z^d$ is partially ordered by stipulating $\underline{m} \underline{<}\underline{n} iff m_i \leq n_i$ for each i, $1 \leq i \leq d$.

Keywords