Journal of the Korean Mathematical Society (대한수학회지)
- Volume 33 Issue 4
- /
- Pages.801-811
- /
- 1996
- /
- 0304-9914(pISSN)
- /
- 2234-3008(eISSN)
THE INVARIANCE PRINCIPLE FOR LINEARLY POSITIVE QUADRANT DEPENDENT RANDOM FIELDS
- Kim, Tae-Sung (Department of Statistics Won-Kwang University) ;
- Seo, Hye-Young (Department of Statistics Won-Kwang University )
- Published : 1996.11.01
Abstract
Let $Z^d$ denote the set of all d-tuples of integers$(d \geq 1, a positive integer)$. The points in $Z^d$ will be denoted by $\underline{m},\underline{n}$, etc., or sometime, when necessary, more explicitly by $(m_1, m_2, \cdots, m_d)$, $(n_1, n_2, \cdots, n_d)$ etc. $Z^d$ is partially ordered by stipulating $\underline{m} \underline{<}\underline{n} iff m_i \leq n_i$ for each i, $1 \leq i \leq d$.
Keywords
- linearly positive quadrant dependence;
- random field;
- invariance principle(functional central limit theorem)