• Title/Summary/Keyword: Intake Valve

Search Result 291, Processing Time 0.02 seconds

Study on the Performance Factors of Two Stage Turbo-Charging System and Maximization of the Miller Cycle (2단 과급시스템의 성능 인자 영향과 밀러 효과 극대화에 관한 연구)

  • Beak, Hyun-min;Seo, Jung-hoon;Lee, Won-ju;Lee, Ji-woong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.953-960
    • /
    • 2019
  • The Miller cycle is a diesel engine that has been developed in recent years that it can reduce NOx and improve fuel consumption by reducing the compression ratio through intake valve closing (IVC) time control. The Miller cycle can be divided into the early Miller method of closing the intake valve before the bottom dead center (BDC) and the late Miller method of closing the intake valve after the BDC. At low speeds, the late Miller method is advantageous as it can increase the volumetric efficiency; while at medium and high speeds, the early Miller method is advantageous because of the high internal temperature reduction effect due to the expansion of the intake air during the piston lowering from IVC to BDC. Therefore, in consideration of the ef ects of the early and late Miller methods, it is necessary to adopt the most suitable Miller method for the operating conditions. In this study, a two-stage turbo charge system was applied to four-stroke engines and the process of enhancing the Miller effect through a reduction of the intake and exhaust valve overlap as well as the valve change adjustment mechanism were considered. As a result, the ef ects of fuel consumption and Tmax reduction were confirmed by adopting the Miller cycle with a two-stage supercharge, a reduction of valve overlap, and an increase of suction valve lift.

A Study on the Problem-Solving Method and Thermal Efficiency Properties at the Time of High Expansion Realization in a 4-Cycle Diesel Engine (4사이클 디젤기관에서 고팽창 실현 시 문제점 해결방안과 열효율 특성에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.835-842
    • /
    • 2009
  • The present thesis carried out a research on a compression pressure's reduction phenomenon and its countermeasure according to the thermal efficiency improvement method by a Miller method in 4-cycle low speed diesel engine. In case of retardation of intake valve closing time in a engine, the theoretical heat efficiency shows a remarkably reducing trend when a compression ratio is not compensated. Accordingly, the thermal efficiency showed an increasing trend in case of compensating the compression ratio. Especially, it could be understood that the theoretical heat efficiency at near ABDC $100^{\circ}$ of intake valve closing time in case of compensation of the compression ratio was improved by around 25.1%, and the mean effective pressure was also increased by around 18.6%. Also, as the retardation of intake valve closing time increases, air quantity becomes insufficient due to a backflow phenomenon of intake air and thus thermal efficiency was decreased in a high load operation domain. The solving method of this problem is possible by supercharge. Therefore, in order to improve thermal efficiency by retardation of ntake valve closing time, the thermal efficiency improvement according to low compression is possible when there are a compensation device of a compression ratio and a supercharge device. This is a problem-solving method of low compression and high expansion cycle.

A Numerical Study on the Turbulent Flow Characteristics Near Compression TDC is Four-Valve-Per-Cylinder Engine (4밸브기관의 압축상사점 부근의 난류특성에 관한 수치해석적 연구)

  • 김철수;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 1993
  • The three-dimensional numerical analysis for in-cylinder flow of four-valve engine without intake port has been successfully computed. These computations have been performed using technique of the general coordinate transformation based on the finite-volume method and body-fitted non-orthogenal grids using staggered control volume and covariant variable as dependent one. Computations are started at intake valve opening and are carried through top-dead-center of compression. A k-$\varepsilon$model is used to represent turbulent transport of momentum. The principal study is the evolution of interaction between mean flow and turbulence and of the role of swirl and tumble in generating near TDC turbulence. Results for three different inlet flow configuration are presented. From these results, complex flow pattern may be effective for promoting combustion in spark-ignition engines and kinetic energy of mean flow near TDC is well converted into turbulent kinetic energy.

  • PDF

Intake Flow Simulation in a D.I. Engine Cylinder (디젤엔진 흡입과정에서 실린더내의 시뮬레이션)

  • 강신형;김응서;송명호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.65-74
    • /
    • 1986
  • A computer program was developed to predict swirling steady axisymmetric turbulent flows by extending TEACH Code. It was applied to a reciprocating engine cylinder with a intake valve on the flat head. Flows were assumed to be steady and swirling. Effects of Reynolds number, the valve lift, and the swirl ratio on flow patterns and turbulence were investigated numerically. Flow patterns were reasonably predicted in comparison with experimental results. Length of the recirculation zone was shortened with increasing valve lifts and swirl ratios. Static pressure distributions show maximum value near the reattachment point of the incoming circular jet and minimum value near the maximum width of the valve attached recirculation zone.

  • PDF

An Experimental Study on Phenomenon of Backfire in H2 HCCI Engine (예혼합 압축착화 수소기관의 역화현상에 관한 실험적 연구)

  • Lee, Jongmin;Lee, Jonggoo;Lee, Kwangju;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • HCCI (Homogeneous Charged Compression Ignition) hydrogen engine has relatively narrower operation range caused by backfire occurrence due to the rapid pressure rising by using higher compression ratio and significant reaction velocity. In this study, to grasp of backfire process and characteristic in the HCCI research hydrogen engine, in-cylinder pressure, intake pressure and backfire limit range are analyzed with compression ratio and intake valve open timing, experimentally. As the result, it is observed that knock is occurred just before backfire occurrence in HCCI hydrogen engine but not spark igntion type, this phenomenon is always the same for the above variables. Also backfire limit range are expanded up to 50% for the more retarding intake valve open timing in this operating conditions.

A study on the Characteristics of In-Cylinder Intake Flow in Spark Ignition Engine Using the PIV

  • Lee Suk-Young;Jeong Ku-Seob;Jeon Chung-Hwan;Chang Young-June
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.704-715
    • /
    • 2005
  • In this study, to investigate in-cylinder tumble or swirl intake flow of a gasoline engine, the flow characteristics were examined with opening control valve (OCV) and several swirl control valves (SCV) which intensify intake flow through steady flow experiment, and also turbulent characteristics of in-cylinder flow field were investigated by 2-frame cross-correlation particle image velocimetry (PIV) method. In the investigation of intake turbulent characteristics using PIV method, the different flow characteristics were showed according to OCV or SCV figures. The OCV or SCV installed engine had higher vorticity and turbulent kinetic energy than a baseline engine, especially around the wall and lower part of the cylinder. Above all, SCV B type was superior to the others. About energy dissipation and reynolds shear stress distribution, a baseline engine had larger loss than OCV or SCV installed one because flow impinged on the cylinder wall. It should be concluded, from what has been said above, as swirl component was added to existing tumble flow adequately, it was confirmed that turbulent intensity was enlarged, flow energy was conserved effectively through the experiment. In other words, there is a suggestion that flow characteristics as these affected to in-cylinder combustion positively.

The Characteristics of Backfire for a Free-Piston Hydrogen Fueled Engine with Reverse Uni-flow Scavenging (Reverse uni-flow 소기방식을 갖는 2행정 프리피스톤 수소기관의 역화 현상에 관한 연구)

  • Byun, Chang-Hee;Choi, Kwan-Yeon;Back, Dae-Ha;Lee, Jong-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.2
    • /
    • pp.98-103
    • /
    • 2010
  • In order to develop two-stroke free-piston hydrogen engine to obtain high thermal efficiency and low emission, backfire occurrence have to be prevented. In this research, backfire characteristics are analyzed as functions of the intake valve opening timing and compression chamber pressure under piston by using RICEM (Rapid Intake Compression Expansion Machine) that has reverse uni-flow scavenging. As the result, reverse uni-flow scavenging is advantage about back fire. but, it exists suitable intake valve opening timing and its timing become known that equivalence ratio 1 retard until the piston rises. Also, To rise chamber pressure of lower piston, this does not cause backfire occurs in equivalent ratio 0.6 observed back fire. Therefore, 2cycle hydrogen fueled free-piston engine is undesirable scavenging compression by compressing the piston.

A Study on the CAI Combustion Characteristics and Stratified Combustion to Extend the Operating Region Using Direct Injection Gasoline Engine (직접분사식 가솔린 엔진을 이용한 CAI 연소특성 및 운전영역 확대를 위한 성층 연소 특성에 관한 연구)

  • Lee, Chang-Hee;Choi, Young-Jong;Lim, Kyoung-Bin;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.25-31
    • /
    • 2006
  • Controlled Auto Ignition(CAI) combustion has great potential in achieving significant increase in engine efficiency, while simultaneously reducing exhaust emissions. The process itself involves the auto ignition and subsequent simultaneous combustion of a premixed charge. In this study, NVO(Negative Valve Overlap) system was applied to a CAI engine in order to use residual gas. The fuel was injected directly to the cylinder under the high temperature condition resulting from heating the intake port to initiate CAI combustion. This paper introduced the valve timing strategy and experimental set-up. From this study, the effect of engine speed and valve timing on CAI combustion and exhaust emissions was clarified. In addition, stratified charge method was used to extend CAI operating region.

A study on domestic fuel detergents (국내 연료청정제에 대한 고찰)

  • 장익순;한규목
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.20-28
    • /
    • 1991
  • 근래에는 국내에서도 전자제어에 의한 Fuel Injection 방식을 채택한 엔진이 늘어가는 추세이며, 따라서 Intake Valve Deposit에 의한 문제가 발생한 소지가 점차 커지고 있으므로, 이에 대한 대비가 필요하게 되었다. 또한 국내 정유회사들도 이러한 추세에 따라 연료청정제(D.C. Additive)를 첨가한 연료를 시판중이거나 시판계획중에 있다. 따라서 국내연료청정제 및 국내 청정제함유 시판연료의 Intake Valve Deposit에 대한 청정효과를 Engine Dynamo 및 실차(Chassis Dynamo)시험을 통해서 평가해 보도록 한다.

  • PDF

In -Cylinder Flow Characteristics Varying Intake Valve Lift (밸브 리프트 변화에 따른 실린더 내 흡입 공기의 유동 특성)

  • 윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.82-88
    • /
    • 1999
  • The object of this study is to find new evaluation index for in-cylinder flow chracteristics istead of current swirl, tumble coefficient using steady flow test rig on intake port system. To this end, port flow system. To this end, port flow rig test was conducted on DOHC head varying intake valve lift respectively. Finally combination angular coefficient and inclination angle were introduced as new evaluation index for in-cylinder angularflow characteristics instead of swirl and tumble coefficient.

  • PDF