• Title/Summary/Keyword: Intake Flow Coefficient

Search Result 61, Processing Time 0.02 seconds

Dispersion of Nonconservative Contaminants Accidentally Released into Natural Streams (사고에 의하여 자연하천으로의 방류된 비보존성 오염물질의 종확산)

  • Jo, Seong-U;Jeon, Gyeong-Su
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.289-301
    • /
    • 2001
  • A fractional step finite difference model for the longitudinal dispersion of nonconservative pollutants is applied to the Nakdong River to simulate the phenol spill accident which occurred on March, 1971. Prior to the dispersion calculation, the flow conditions are simulated to provide inputs to the dispersion model. An unsteady flow model based on Preissmann's four-point scheme is used for this purpose. Sensitivities of the dispersion calculation to empirical equations for dispersion coefficient and to the first-order decay coefficient are analyzed. The time to peak concentration at a downstream location is significantly different depending on the formula for the dispersion coefficient. Although the decay coefficient does not affect the shape of the temporal concentration distribution, the concentration values depend on the decay coefficient verb significantly. An optimization technique is used to calibrate the dispersion model as well as the flow model. The time to the peak concentration is simulated for major positions of water intake along the Nakdong River.

  • PDF

Development of the 3-D Bulk Motion Index for In-Cylinder Flow Induced by Induction System (I) - Based on the 3-D CFD Simulation Results - (흡기시스템을 통해 실린더로 유도되는 공기의 3차원 Bulk Motion Index 개발 (I) - 3차원 유동해석결과를 중심으로 -)

  • Yun, Jeong-Eui;Nam, Hyeon-Sik;Kim, Myung-Hwan;Min, Sun-Ki;Park, Pyeong-Wan;Kim, Ki-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1057-1065
    • /
    • 2006
  • In order to figure out the physical meaning of 3-D angular flow index for in-cylinder bulk motion, CFD analysis for the swirl and tumble steady flow test rig were made using commercial package STAR-CD. Computer simulations and rig tests on some kinds of induced flow conditions were carried out. Finally, based on the comparison between the simulated results and measured results, the physical meaning of 3-D angular flow index $|\longrightarrow_{N_B}|$, $\beta$ composed of swirl and tumble coefficients measured by steady flow test rig was described.

A Study on the Mixture Formation in a Fuel Injection System (연료분사장치의 혼합기 형성에 관한 연구)

  • ;;;Lee, K. H.;Seo, Y. H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2690-2698
    • /
    • 1995
  • Fuel atomization and mixture formation in an gasoline engine has influence on the engine performance and pollutant emission. The throttle valve installed in an intake system plays a greater role in control of mixture quantity in accordance with engine drive condition. In this study, the characteristics of secondary atomization developed at the downstream of the valves were observed using an image processing method. Two major kinds of valves, solid and perforated ones, are chosen in order to compare the valve performance with the experimental parameters of air flow rate, valve opening angle, and valve shapes. For the perforated valve, we can obtain the relatively small sized droplets, and nearly uniformed and dense distributed sprays with low loss coefficient than for the solid valve.

An Experimental Study on the Supplemental Cooling and Heating Performance Using 1 kW Thermoelectric Module for Vehicle (열전모듈을 이용한 자동차용 1 kW급 보조 냉난방 시스템의 성능에 관한 실험적 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.224-230
    • /
    • 2014
  • The purpose of this paper is to investigate the performance of supplemental cooling and heating system equipped with the 1 kW thermoelectric module. The system consist of 96 thermoelectric modules, heat sink with louver fin and water cooling jacket which is attached on the hot side of the thermoelectric module. The cooling and heating performance test of the thermoelectric system is conducted with various conditions, such as intake voltage, air inlet temperature, air flow volume, water inlet temperature and water flow rate at calorimeter chamber in consideration of environmental conditions in realistic vehicle drive. The experimental results of a thermoelectric system shows that the cooling capacity and COP is 1.03 kW, and 1.0, and heating capacity and COP is 1.53 kW, and 1.5 respectively.

A Study on the Combustion Characteristics and the Control on the Fuel Flow Rate of LPG Intake Port Injection Engine (흡기포트 분사식 LPG 엔진의 연료량 제어 및 연소 특성에 관한 연구)

  • 김우석;이종화;정창현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.31-39
    • /
    • 2000
  • In this paper, characteristics of a port injection type LPG fuel system were investigated to adopt the system to a spark ignition engine through rig test. Engine combustion characteristics for limited conditions and the precise control method of LPG fuel supply were also studied. As a basic experiment, the effects and the relationships of parameters such as orifice area, fuel delivery pressure, fuel temperature and flow coefficient were established. From this, one dimensional compressible flow equation can be applied to control gaseous fuel flow rate by setting pressure difference between vaporizer and manifold to a certain range, for example about 1.2 bar in a naturally aspirated engine. The combustion analysis results of LPG engine were also compared with those of gasoline engine according to spark timing and load change. At part load and stoichiometric condition, the MBT spark timing of LPG fueled engine is retarded by 2$^{\circ}$ - 4$^{\circ}$CA compared to that of gasoline engine. On the contrary, the spark timing of LPG fueled engine can be advanced by 5$^{\circ}$- 10$^{\circ}$ CA at WOT, which results from higher Octane Number and burned fraction of LPG fuel compared to gasoline.

  • PDF

Computational Fluid Dynamics Simulation of Flow Pattern Change in the Andong-Imha Reservoir Connecting Tunnel Due to Fish Exclusion Screens (어류 차단 스크린 설치에 따른 안동-임하호 연결터널 내 흐름변화에 대한 전산유체동역학 수치모의)

  • An, Sangdo
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.477-485
    • /
    • 2014
  • Imha Reservoir is connected to Andong Reservoir via a diversion tunnel allowing water to pass between. The diversion tunnel is equipped with screens to exclude exotic largemouth bass due to their predatory impacts on prey assemblages resulting in a degradation of species richness of local fish fauna and extinction of local fish populations in Korea. Flow pattern changes resulting from the fish screens and trash racks were investigated using a computational fluid dynamics (CFD) model. Numerical simulations showed that the decrease in the discharge capacity of the tunnel is approximately 8.6% and the headloss coefficient for fish screen at Andong intake tower was determined to be 1.5. In order not to allow the small fishes enough to pass through the wire openings enter into Imha Reservoir through tunnel, the velocity in the tunnel should be greater than 1.48 m/s which is a critical ascending velocity of the bass. This study suggests that it can keep the velocity higher enough to exclude largemouth bass when a gate opens with the condition of 1.0m difference in water stage between two reservoirs.

Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(5)-Effect of Evaluation Position (정상유동 장치에서 유동 특성 평가 방법에 대한 연구(5) - 평가위치의 영향)

  • Cho, Siehyung;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.179-189
    • /
    • 2017
  • This paper is the fifth investigation on the methods of evaluating flow characteristics in a steady flow bench. In previous studies, several assumptions used in the steady flow bench were examined and it was concluded that the assumption of the solid rotation may lead to serious problems. In addition, though the velocity profiles were improved as the measuring position went downstream, the distributions were far from ideal regardless of the valve angle and evaluation position. The eccentricities were also not sufficiently small to disregard the effect on impulse swirl meter (ISM) measurement. Therefore, the effect of these distribution and eccentricity changes according to the positions needs to be analyzed to discuss the method of flow characteristics estimation. In this context, the effects of evaluation position on the steady flow characteristics were studied. For this purpose, the swirl coefficient and swirl ratio were assessed and compared via measurement of the conventional ISM and calculation based on the velocity by particle image velocimetry(PIV) from 1.75B, 1.75 times bore position apart from the cylinder head, to the 6.00B position. The results show that the swirl coefficients by ISM strictly decrease and the curves as a function of the valve lift become smooth and linear as the measuring position goes downstream. However, the values through the calculation based on the PIV are higher at the farther position due to the approach of the tangential velocity profile to ideal. In addition, there exists an offset effect between the velocity distribution and eccentricity in the low valve lift range when the coefficients are estimated based on the swirl center. Finally, the curve of the swirl ratio by ISM and by PIV evaluation as a function the measuring position intersect around 5.00B plane except at $26^{\circ}$ valve angle.

Study on the Effect of Total Pressure Loss by Bell Mouth Inlet Screen (벨 마우스 흡입구 보호망에 의한 전압력 손실영향 연구)

  • Lee, Changwook;Choi, Seong Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.29-35
    • /
    • 2021
  • Bell mouth inlet is applied in various industries due to the advantage of little pressure loss and accurate flow measurement. In this study, the configuration of the bell mouth intake is designed in a long radius shape, and a suitable grid size was selected to minimize the pressure drop and to prevent the engine damage by foreign objects at outdoor operating conditions. It was able to present a modified pressure drop coefficient equation from two data obtained from the computational simulation and experimental results for the total pressure loss by inlet screen installation.

Effects of Swirl and Combustion Parameters on the Performance and Emission in a Turbocharged D.1. Diesel Engine (선회유동 및 연소인자가 터보과급 디젤엔진의 성능 및 배기가스특성에 미치는 영향)

  • 윤준규;차경옥
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.90-98
    • /
    • 2002
  • The effects of swirl and combustion parameters on the performance and emission in a turbo-charged D.I. diesel engine of the displacement 9.4L were studied experimentally in this paper. Generally the swirl in the combustion process of diesel engine promotes mixing of the injection fuel and the intake air. It is a major factor to improve the engine performance because the fuel consumption and NO$_{x}$ is trade-off according to the high temperature and high pressure of combustion gas in a turbocharged D.I. diesel engine, it's necessary to thinking over the intake and exhaust system, the design of combustion bowl and so on. In order to choose a turbocharger of appropriate capacity. As a result of steady flow test, when the swirl ratio is increased, the mean flow coefficient is decreased, whereas the gulf factor is increased. Also, through engine test its can be expected to meet performance and emissions by optimizing the main parameter's; the swirl ratio is 2.43, injection timing is BTDC 13$^{\circ}$ CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 and turbine A/R 1.19.

A Study on Fuel Transport Characteristics in a Port Fuel Injected Sl Engine during Transient Condition (흡기포트 분사방식의 가솔린 엔진에서 급가속시 연료 거동에 관한 연구)

  • 황승환;조용석;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-27
    • /
    • 2003
  • In this paper, the fuel transport characteristics during transient condition was studied by using a Fast Response Flame Ionization Detector(FRFID). The quantitative measurement method for the inducted fuel mass into cylinder is studied. The inducted fuel mass into the cylinder was estimated by using calculated air-fuel ratio by hydrocarbon concentration of cylinder and air flow model. In order to estimate the transportation of injected fuel from the intake port into cylinder, the wall wetting fuel model was used. The two coefficient $\alpha$,$\beta$) of the wall-wetting fuel model was determined from the measured fuel mass that was inducted into the cylinder at the first cycle after injection cut-off To reduce an air/fuel ratio fluctuation during rapid throttle opening, the appropriate fuel injection rate was obtain from the wall wetting model with empirical coefficients. Result of air/fuel ratio control, air/fuel excursion was reduced.