• Title/Summary/Keyword: Insulin secretion

Search Result 288, Processing Time 0.031 seconds

A Study on the Regulation of Endometrial and Placental Cell Function by Water Extract of 3 Types of Herbal Medicines and Ethanol Extract on Scutellariae Radix (3종 한약 처방 물 추출물과 황금 에탄올 추출물에 의한 자궁내막과 태반세포 기능조절 연구)

  • Park, Seo-Ye;Noh, Eui-Jeong;Seo, Chang-Seob;Lee, Sung-Ki;Shin, Hyeun-Kyoo
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.34 no.3
    • /
    • pp.1-14
    • /
    • 2021
  • Methods: We investigated the ability to induce decidualization of human endometrial stromal cells and invasive ability of human trophoblast cells by water extract of three types herbal medicines (Dangguijakyak-san, Siryung-tang, Antae-eum) and ethanol extract on Scutellariae Radix. Results: In the process of decidualization of endometrial stromal cells, three herbal medicines including Dangguijakyak-san, Siryung-tang, and Scutellariae Radix increased the production of decidual markers such as prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1). However, Antae-eum increased mRNA levels of PRL and IGFBP and secretion of IGFBP in decidual stromal cells, but not PRL. Four herbal medicines inhibited the invasion of trophoblast cells. Conclusions: Four herbal medicines may play a role in implantation in women with reproductive failures. However, further studies are warranted to elucidate whether these medications are helpful in the maintenance of pregnancy.

Helianthus tuberosus Extract Has Anti-Diabetes Effects in HIT-T15 Cells (HIT-T15 세포에서 돼지감자 추출물의 항당뇨 효과)

  • Kim, Jeong-Lan;Bae, Cho-Rong;Cha, Youn-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.1
    • /
    • pp.31-35
    • /
    • 2010
  • This study was designed to evaluate anti-diabetes effect of Helianthus tuberosus extract (HT) in HIT-T15 cells. There were 5 experimental groups according to treatment NC (0 ${\muL/mL$), HT2 (1.1 ${\muL/mL$), HT3 (1.5 ${\muL/mL$), IN2 (1.8 ${\muL/mL$), IN3 (2.5 ${\muL/mL$). Inulin (IN) was used as a positive control for the Helianthus tuberosus extract groups. Cell viability was significantly increased in the HT3 (1.5 ${\muL/mL$), IN2 (1.8 ${\muL/mL$), IN3 (2.5 ${\muL/mL$) groups, compared with the NC group. There was no significant difference in cytotoxicity among all groups. Cell survival by MTT assay with alloxan was significantly increased in the HT2 (1.1 ${\muL/mL$), HT3 (1.5 ${\muL/mL$) groups, compared with the NC group. Insulin secretion and NAD+/NADH ratio were significantly increased in the HT3 group, compared with the NC group. We found that Helianthus tuberosus extract increased cell viability, had a protective effect on $\beta$-cells, and increased insulin secretion level and $NAD^+$/NADH ratio in HIT-T15 cells. These results suggest that Helianthus tuberosus extract improves the diabetes-related factors.

Changes in the Profiles of Serum LH, Testosterone, Estrogen and IFG-I during Sexual Development in Male Korean Native Chickens (한국재래 수탉에서 부화 후 혈청내 LH, Testosterone, Estrogen과 IGF-I 농도의 변화)

  • Tae H. J.;Jang B. G.;Choi C. H.;Park Y. J.;Yang H. H.;Kim I. S.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.2
    • /
    • pp.135-141
    • /
    • 2005
  • Changes in serum estradiol, insulin-like growth factor-1, leuteinizing and testosterone levels, and leuteinizing hormone-stimulated testosterone production per testis in vitro from hatching to adulthood were studied in Korean native chickens of 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 21, 24, 28, 32, 44, 52 and 64 weeks (n=13 chickens per group) of age. The changes in the profiles of the levels in the incubation medium of luteinizing hormone-stimulated (100 ng/mL) testosterone secretion per testis in vitro, and the serum LH, testosterone, estradiol, and insulin-like growth factor-I were determined by radioimmunoassay. Serum estradiol levels were not significantly different at week 4 compared to that of 8, 12, 16, 21, 32, :md 44. Significant decreases were observed at weeks 52 and 64. Serum leuteinizing hormone concentrations were not significantly different from 1 week to 12 weeks, increased gradually up to 32 weeks of age, and declined significantly thereafter; the highest value was at 32 weeks, and the lowest value was detected at 2 weeks of age. Serum insulin-like growth factor-I concentrations increased significantly from 1 week to 16 weeks, remained low and unchanged with advancing age. Serum testosterone concentrations were not significantly different at week 1 compared weeks 2, 4, 6, and 8. Significant increases were observed from 10 weeks to 32 weeks of age. Values at weeks 24, 28 and 32 and at weeks 32, 44, 52, and 64 were not significantly different. The highest value was at weeks 28 and the lowest value was detected at weeks 1 week. LH-stimulated testosterone production per testis in vitro increased gradually with age from 1 to 32 weeks and decreased significantly from 44 weeks to 64 weeks of age.

The Anti-diabetic Effects of Kocat-D1 on Streptozotocin-Induced Diabetic Rats (Kocat-D1의 streptozotocin으로 유도한 당뇨모델에 대한 항당뇨 활성)

  • Won, Hye-Jin;Lee, Hyun-Sun;Kim, Jong-Tak;Hong, Chung-Oui;Koo, Yun-Chang;Lee, Kwang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.204-209
    • /
    • 2010
  • This study was conducted to investigate the anti-diabetic activity of Kocat-D1, which is widely used in traditional medicine to treat diabetes in Shandong, China. Sprague Dawley rats (8 weeks of age) were separated into 4 groups: a normal control, streptozotocin (STZ)-induced diabetic rat group (DM control), Kocat-D1-1 (diabetic rat treated with 0.25 g/kg/day hot water extract), and Kocat-D1-2 (diabetic rat treated with 1 g/kg/day hot water extract). After eight weeks of treatment, the fasting blood glucose levels of the Kocat-D1-1 ($334.3{\pm}32.9\;mg/dL$) and Kocat-D1-2 group ($259.5{\pm}35.0\;mg/dL$) were significantly lower when compared to the DM control group ($451{\pm}42.6\;mg/dL$). Furthermore, the levels of glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), albumin and high-density lipoprotein (HDL) cholesterol in the serum of the Kocat-D1-2 group were significantly normalized when compared to the DM control group. However, significant differences were not observed between the Kocat-D1-1 group and the DM control group. Histochemical staining of the liver of the Kocat-D1-2 group revealed no fat accumulation. The insulin level was significantly upregulated in the Kocat-D1-2 group ($0.13{\pm}0.02\;ng/mL$) when compared to the DM control group ($0.05{\pm}0.04\;ng/mL$). The relative volume of $\beta$-cells in the pancreas of the Kocat-D1-2 group ($49.4{\pm}4.2%$) also increased significantly when compared to the DM control group ($12.9{\pm}7.9%$). These results suggest that Kocat-D1 exerts an anti-hyperglycemic effect through the enhancement of insulin secretion.

$Ca^{2+}$-induced $Ca^{2+}$ Release from Internal Stores in INS-1 Rat Insulinoma Cells

  • Choi, Kyung-Jin;Cho, Dong-Su;Kim, Ju-Young;Kim, Byung-Joon;Lee, Kyung-Moo;Kim, Shin-Rye;Kim, Dong-Kwan;Kim, Se-Hoon;Park, Hyung-Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • The secretion of insulin from pancreatic ${\beta}$-cells is triggered by the influx of $Ca^{2+}$ through voltage-dependent $Ca^{2+}$ channels. The resulting elevation of intracellular calcium ($[Ca^{2+}]_i$) triggers additional $Ca^{2+}$ release from internal stores. Less well understood are the mechanisms involved in $Ca^{2+}$ mobilization from internal stores after activation of $Ca^{2+}$ influx. The mobilization process is known as calcium-induced calcium release (CICR). In this study, our goal was to investigate the existence of and the role of caffeine-sensitive ryanodine receptors (RyRs) in a rat pancreatic ${\beta}$-cell line, INS-1 cells. To measure cytosolic and stored $Ca^{2+}$, respectively, cultured INS-1 cells were loaded with fura-2/AM or furaptra/AM. $[Ca^{2+}]_i$ was repetitively increased by caffeine stimulation in normal $Ca^{2+}$ buffer. However, peak $[Ca^{2+}]_i$ was only observed after the first caffeine stimulation in $Ca^{2+}$ free buffer and this increase was markedly blocked by ruthenium red, a RyR blocker. KCl-induced elevations in $[Ca^{2+}]_i$ were reduced by pretreatment with ruthenium red, as well as by depletion of internal $Ca^{2+}$ stores using cyclopiazonic acid (CPA) or caffeine. Caffeine-induced $Ca^{2+}$ mobilization ceased after the internal stores were depleted by carbamylcholine (CCh) or CPA. In permeabilized INS-1 cells,$Ca^{2+}$ release from internal stores was activated by caffeine, $Ca^{2+}$, or ryanodine. Furthermore, ruthenium red completely blocked the CICR response in perrneabilized cells. RyRs were widely distributed throughout the intracellular compartment of INS-1 cells. These results suggest that caffeine-sensitive RyRs exist and modulate the CICR response from internal stores in INS-1 pancreatic ${\beta}$-cells.

Characteristics of Potassium Channel in the Isolated Rat Detrusor Muscle (흰쥐 배뇨근에 존재하는 potassium 통로의 특성)

  • Jang, Myeong-Soo;Choi, Eun-Me;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.11 no.2
    • /
    • pp.363-374
    • /
    • 1994
  • The purpose of this study was to investigate the characteristics or the potassium channels existing in the rat urinary bladders. Smooth muscle strips of rat detrusor urinae were examined by isometric myography. Relaxation responses of detrusor muscle strips to the three potassium channel openers pinacidil, a cyanoguanidine derivative, BRL 38227, a benzopyran derivative and RP 52891, a tertrahydrothiopyran derivative were examined. The potassium channel openers reduced the basal tone, and the rank order of potency was RP 52891>pincidil>BRL 38227. Procaine, an inhibitor of the voltage-sensitive potassium channel tended to increase the basal tone, but it did not affect the relaxant effects of the calcium-activated potassium channel opener did not antagonize the relaxant effects, but it reduced the Emax of RP 52891 and BRL 38227. Glibenclamide, an inhibitor of the ATP-sensitive potassium channel, antagonized the relaxant effects of pinacidil, RP 52891 and BRL 38227 reducing the Emax of RP 52891 and BRl 38227. Galanin which inhibits secretion of insulin through opening the ATP-sensitive potassium channels in pancreatic ${\beta}$-cells rather increased the basal tone of the isolated detrusor strips. These results suggest that the urinary bladder of the rat has mainly the ATP-sensitive, glibenclamide sensitive potassium channel, which is a different type from that in the pancreatic ${\beta}$-islet cells..

  • PDF

Sodium butyrate has context-dependent actions on dipeptidyl peptidase-4 and other metabolic parameters

  • Lee, Eun-Sol;Lee, Dong-Sung;Pandeya, Prakash Raj;Kim, Youn-Chul;Kang, Dae-Gil;Lee, Ho-Sub;Oh, Byung-Chul;Lee, Dae Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.519-529
    • /
    • 2017
  • Sodium butyrate (SB) has various metabolic actions. However, its effect on dipeptidyl peptidase 4 (DPP-4) needs to be studied further. We aimed to evaluate the metabolic actions of SB, considering its physiologically relevant concentration. We evaluated the effect of SB on regulation of DPP-4 and its other metabolic actions, both in vitro (HepG2 cells and mouse mesangial cells) and in vivo (high fat diet [HFD]-induced obese mice). Ten-week HFD-induced obese C57BL/6J mice were subjected to SB treatment by adding SB to HFD which was maintained for an additional 16 weeks. In HepG2 cells, SB suppressed DPP-4 activity and expression at sub-molar concentrations, whereas it increased DPP-4 activity at a concentration of $1,000{\mu}M$. In HFD-induced obese mice, SB decreased blood glucose, serum levels of insulin and $IL-1{\beta}$, and DPP-4 activity, and suppressed the increase in body weight. On the contrary, various tissues including liver, kidney, and peripheral blood cells showed variable responses of DPP-4 to SB. Especially in the kidney, although DPP-4 activity was decreased by SB in HFD-induced obese mice, it caused an increase in mRNA expression of $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$. The pro-inflammatory actions of SB in the kidney of HFD-induced obese mice were recapitulated by cultured mesangial cell experiments, in which SB stimulated the secretion of several cytokines from cells. Our results showed that SB has differential actions according to its treatment dose and the type of cells and tissues. Thus, further studies are required to evaluate its therapeutic relevance in metabolic diseases including diabetes and obesity.

Effects of Dietary Fructose and Glucose on Hepatic Steatosis and NLRP3 Inflammasome in a Rodent Model of Obesity and Type 2 Diabetes (비만 및 제2형 당뇨병 쥐 모델에서 과당과 포도당의 섭취가 지방간과 NLRP3 염증조절결합체에 미치는 영향)

  • Lee, Hee Jae;Yang, Soo Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1576-1584
    • /
    • 2013
  • This study is carried out to assess the relative effects of different doses of dietary glucose or fructose on non-alcoholic fatty liver disease (NAFLD) and hepatic metaflammation in a rodent model of type 2 diabetes. KK/HlJ male mice were fed experimental diets as follows: 1) control (CON), 2) moderate glucose (MG, 30% of total calories as glucose), 3) high glucose (HG, 60% of total calories as glucose), 4) moderate fructose (MF, 30% of total calories as fructose), and 5) high fructose (HF, 60% of total calories as fructose) for three weeks. Food intake was not affected by treatments. Compared with HF, HG not only increased serum fasting glucose and area under the curve during oral glucose tolerance test, but also decreased the levels of serum insulin and adiponectin. It indicated that glucose control was complicated via high glucose intake. High fructose treatment led to increased triglyceride in the serum and liver. In comparison to HG, high fructose diet activated NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome consisting of apoptosis-associated speck-like protein containing a CARD (ASC), NLRP3 and caspase 1, which increases interleukin (IL)-$1{\beta}$ maturation and secretion. The activation of NLRP3 inflammasome was accompanied by increased levels of tumor necrosis factor alpha (TNF-${\alpha}$) and IL-6. However, the expression of NLRP3 inflammasome components and pro-inflammatory cytokines did not differ between CON and HG. These data suggested that dietary fructose triggers hepatic metaflammation accompanied by NLRP3 inflammasome activation and has deleterious effects on NAFLD.

Disorders of Potassium Metabolism (칼륨 대사 장애)

  • Lee, Joo-Hoon
    • Childhood Kidney Diseases
    • /
    • v.14 no.2
    • /
    • pp.132-142
    • /
    • 2010
  • Hypokalemia usually reflects total body potassium deficiency, but less commonly results from transcellular potassium redistribution with normal body potassium stores. The differential diagnosis of hypokalemia includes pseudohypokalemia, cellular potassium redistribution, inadequate potassium intake, excessive cutaneous or gastrointestinal potassium loss, and renal potassium wasting. To discriminate excessive renal from extrarenal potassium losses as a cause for hypokalemia, urine potassium concentration or TTKG should be measured. Decreased values are indicative of extrarenal losses or inadequate intake. In contrast, excessive renal potassium losses are expected with increased values. Renal potassium wasting with normal or low blood pressure suggests hypokalemia associated with acidosis, vomiting, tubular disorders or increased renal potassium secretion. In hypokalemia associated with hypertension, plasam renin and aldosterone should be measured to differentiated among hyperreninemic hyperaldosteronism, primary hyperaldosteronism, and mineralocorticoid excess other than aldosterone or target organ activation. Hypokalemia may manifest as weakness, seizure, myalgia, rhabdomyolysis, constipation, ileus, arrhythmia, paresthesias, etc. Therapy for hypokalemia consists of treatment of underlying disease and potassium supplementation. The evaluation of hyperkalemia is also a multistep process. The differential diagnosis of hyperkalemia includes pseudohypokalemia, redistribution, and true hyperkalemia. True hyperkalemia associated with decreased glomerular filtration rate is associated with renal failure or increased body potassium contents. When glomerular filtration rate is above 15 mL/min/$1.73m^2$, plasma renin and aldosterone must be measured to differentiate hyporeninemic hypoaldosteronism, primary aldosteronism, disturbance of aldosterone action or target organ dysfunction. Hyperkalemia can cause arrhythmia, paresthesias, fatigue, etc. Therapy for hyperkalemia consists of administration of calcium gluconate, insulin, beta2 agonist, bicarbonate, furosemide, resin and dialysis. Potassium intake must be restricted and associated drugs should be withdrawn.

Ginsenoside $Rg_3$ Increases the ATP-sensitive $K^+$ Channel Activity in the Smooth Muscle of the Rabbit Coronary Artery

  • Chung Induk;Lee Jeong-Sun
    • Journal of Ginseng Research
    • /
    • v.23 no.4
    • /
    • pp.235-238
    • /
    • 1999
  • ATP-sensitive $K^+$ channels $(K_{ATP})$ are expressed in vascular smooth muscle cells, skeletal muscle cells, pancreatic ${\beta}$ cells, neurons and epithelial cells. $K_{ATP}$ contributes to regulate membrane potential to control vascular tone, to protect myocardial ischemia, and to regulate insulin secretion in pancreatic ${\beta}$ cells. We previously demonstrated that ginseng saponins and ginsenoside $Rg_3$ activated maxi $Ca^{2+}-activated\;K^+$ channel, and this might cause vasodilation. Because $K_{ATP}$ plays an important roles to regulate the resting membrane potential in vascular smooth muscle cells, we investigated whether ginsenoside $Rg_3$ produces vasodilation by activating $K_{ATP}$ We showed in this study that $K_{ATP}$ is expressed in rabbit coronary artery smooth muscle cells. $K_{ATP}$ was inwardly rectifying and was inhibited by intemal application of ATP. Micromolar minoxidil activated, but glyburide inhibited the activity of $K_{ATP}$ Ginsenoside $Rg_3$ relieved inactivaiton of whole-cell $K_{ATP}$ current without affecting the peak amplitude of $K_{ATP}$ currents presumably due to more opening of the channels.

  • PDF