• Title/Summary/Keyword: Insulator-to-metal phase transition

Search Result 25, Processing Time 0.022 seconds

In-situ monitoring of oxidation states of vanadium with ambient pressure XPS

  • Kim, Geonhwa;Yoon, Joonseok;Yang, Hyukjun;Lim, Hojoon;Lee, Hyungcheol;Jeong, Changkil;Yun, Hyungjoong;Jeong, Beomgyun;Ethan, Crumlin;Lee, Juhan;Ju, Honglyoul;Mun, Bongjin Simon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.125.2-125.2
    • /
    • 2015
  • The evolution of oxidation states of vanadium is monitored with ambient pressure X-ray photoemission spectroscopy. As the pressure of oxygen gas and surface temperature change, the formations of various oxidation states of vanadium are observed on the surface. Under 100mTorr of the oxygen gas pressure and 523K of sample temperature, VO2 and V2O5 are formed on the surface. The temperature-dependent resistance measurement on grown sample shows a clear metal-insulator transition near 350K. In addition, the measurement of Raman spectroscopy displays the structural change from monoclinic to rutile structures across the phase transition temperature.

  • PDF

Growth of Two-Dimensional Nanostrcutured VO2 on Graphene Nanosheets (그래핀 나노 시트 위에 2차원 나노구조를 갖는 VO2의 성장)

  • Oh, Su-Ar;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.502-507
    • /
    • 2016
  • Vanadium dioxide, $VO_2$, is a thermochromic material that exhibits a reversible metal-insulator phase transition at $68^{\circ}C$, which accompanies rapid changes in the optical and electronic properties. To decrease the transition temperature around room temperature, a number of studies have been performed. The phase transition temperature of 1D nanowire $VO_2$ with a 100 nm diameter was reported to be approximately $29^{\circ}C$. In this study, 1D or 2D nanostructured $VO_2$ was grown using the vapor transport method. Vanadium dioxide has a different morphology with the same growth conditions for different substrates. The 1D nanowires $VO_2$ were grown on a Si substrate ($Si{\setminus}SiO_2$(300 nm), whereas the 2D & 3D nanostructured $VO_2$ were grown on an exfoliated graphene nanosheet. The crystallographic properties of the 1D or 2D & 3D nanostructured $VO_2$, which were grown by thermal CVD, and exfoliated-transferred graphene nanosheets on a Si wafer which was used as substrate for the vanadium oxide nanostructures, were analyzed by Raman spectroscopy. The as-grown vanadium oxide nanostructures have a $VO_2$ phase, which are confirmed by Raman spectroscopy.

Band-switchable Terahertz Metamaterial Based on an Etched VO2 Thin Film (식각된 VO2 박막을 이용한 밴드-전환형 테라헤르츠파 메타물질)

  • Ryu, Han-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.31-36
    • /
    • 2020
  • We propose a band-switchable terahertz metamaterial based on an etched vanadium dioxide (VO2) thin film. A line of etched VO2 thin film was placed in the center gap of the split square-loop shape for the tunability of the metamaterial. The resonance frequency of the metamaterial can be switched from the 1.4 THz band to the 0.7 THz band, according to the insulator-metal phase transition in the VO2 thin film. The absolute difference in the transmittance of the metamaterial was 78.5% and 65.8% at 0.7 THz and 1.4 THz respectively, according to the band switching. The differential phase shift was around 90°, and the transmittance was stably maintained between 40% and 60% in the middle band of the two switchable resonance-frequency bands.

A Study on the Vanadium Oxide Thin Films as Cathode for Lithium Ion Battery Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착된 리튬 이온 이차전지 양극용 바나듐 옥사이드 박막에 관한 연구)

  • Jang, Ki-June;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.80-85
    • /
    • 2019
  • Vanadium dioxide is a well-known metal-insulator phase transition material. Lots of researches of vanadium redox flow batteries have been researched as large scale energy storage system. In this study, vanadium oxide($VO_x$) thin films were applied to cathode for lithium ion battery. The $VO_x$ thin films were deposited on Si substrate($SiO_2$ layer of 300 nm thickness was formed on Si wafer via thermal oxidation process), quartz substrate by RF magnetron sputter system for 60 minutes at $500^{\circ}C$ with different RF powers. The surface morphology of as-deposited $VO_x$ thin films was characterized by field-emission scanning electron microscopy. The crystallographic property was confirmed by Raman spectroscopy. The optical properties were characterized by UV-visible spectrophotometer. The coin cell lithium-ion battery of CR2032 was fabricated with cathode material of $VO_x$ thin films on Cu foil. Electrochemical property of the coin cell was investigated by electrochemical analyzer. As the results, as increased of RF power, grain size of as-deposited $VO_x$ thin films was increased. As-deposited thin films exhibit $VO_2$ phase with RF power of 200 W above. The transmittance of as-deposited $VO_x$ films exhibits different values for different crystalline phase. The cyclic performance of $VO_x$ films exhibits higher values for large surface area and mixed crystalline phase.

Electrically Controllable Asymmetric Split-Loop Terahertz Resonator with Outer Square Loop (전기적 제어 가능한 외곽 사각 고리 추가형 테라헤르츠 비대칭 분리고리공진기)

  • Park, Dae-Jun;Ryu, Han-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.2
    • /
    • pp.59-67
    • /
    • 2017
  • This paper proposes an asymmetric split-loop resonator with an outer square loop (ASLR-OSL), which can actively control terahertz wave transmission properties while maintaining a high-Q-factor of the asymmetric split-loop resonator (ASLR). An added outer square loop is designed to play the roles of both a metamaterial and a micro-heater, which can control the temperature through a directly applied bias voltage. A vanadium dioxide ($VO_2$) thin film, which exhibits an insulator-metal phase transition with temperature change, is used to control the transmission properties. The proposed ASLR-OSL shows transmission properties similar to those of the ASLR, and they can be successfully controlled by directly applying bias voltage to the outer square loop. Based on these results, an electrically controllable terahertz high-Q metamaterial could be achieved simply by adding a square loop to the outside of a well-known high-Q metamaterial.