Browse > Article
http://dx.doi.org/10.3807/KJOP.2020.31.1.031

Band-switchable Terahertz Metamaterial Based on an Etched VO2 Thin Film  

Ryu, Han-Cheol (Department of IT Convergence Engineering, Sahmyook University)
Publication Information
Korean Journal of Optics and Photonics / v.31, no.1, 2020 , pp. 31-36 More about this Journal
Abstract
We propose a band-switchable terahertz metamaterial based on an etched vanadium dioxide (VO2) thin film. A line of etched VO2 thin film was placed in the center gap of the split square-loop shape for the tunability of the metamaterial. The resonance frequency of the metamaterial can be switched from the 1.4 THz band to the 0.7 THz band, according to the insulator-metal phase transition in the VO2 thin film. The absolute difference in the transmittance of the metamaterial was 78.5% and 65.8% at 0.7 THz and 1.4 THz respectively, according to the band switching. The differential phase shift was around 90°, and the transmittance was stably maintained between 40% and 60% in the middle band of the two switchable resonance-frequency bands.
Keywords
Metamaterial; Vanadium dioxide; Terahertz; Transmittance; Phase shift;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. U. Jepsen, D. G. Cooke, and M. Koch, "Terahertz spectroscopy and imaging - Modern techniques and applications," Laser Photonics Rev. 5, 124-166 (2011).   DOI
2 M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).   DOI
3 H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, "Terahertz spectroscopy and imaging for defense and security applications," Proc. IEEE 95, 1514-1527 (2007).   DOI
4 H.-C. Ryu, N. Kim, S.-P. Han, H. Ko, J.-W. Park, K. Moon, and K. H. Park, "Simple and cost-effective thickness measurement terahertz system based on a compact 1.55 ${\mu}m$ $\lambda$/4 phase-shifted dual-mode laser," Opt. Express 20, 25990-25999 (2012).   DOI
5 J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with negative refractive index," Nature 455, 376-379 (2008).   DOI
6 D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).   DOI
7 M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature 470, 369-373 (2011).   DOI
8 H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).   DOI
9 H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nat. Photonics 3, 148-151 (2009).   DOI
10 L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, "Graphene plasmonics for tunable terahertz metamaterials," Nat. Nanotechnol. 6, 630-634 (2011).   DOI
11 J.-H. Shin, K. H. Park, and H.-C. Ryu, "Electrically controllable terahertz square-loop metamaterial based on $VO_{2}$ thin film," Nanotechnology 27, 195202 (2016).   DOI
12 B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, "Broadband graphene terahertz modulators enabled by intraband transitions," Nat. Commun. 3, 780 (2012).   DOI
13 S. Yang, C. Tang, Z. Liu, B. Wang, C. Wang, J. Li, L. Wang, and C. Gu, "Simultaneous excitation of extremely high-Q-factor trapped and octupolar modes in terahertz metamaterials," Opt. Express 25, 15938-15946 (2017).   DOI
14 H. C. Ryu, "Electrically controllable terahertz wave modulator based on a metamaterial and $VO_{2}$ thin film," Korean J. Opt. Photon. 25, 279-285 (2014).   DOI
15 D. J. Park, J. H. Shin, K. H. Park, and H. C. Ryu, "Electrically controllable THz asymmetric split-loop resonator with an outer square loop based on $VO_{2}$," Opt. Express 26, 17397-17406 (2018).   DOI
16 J.-H. Shin, S.-P. Han, M. Song, and H.-C. Ryu, "Gradual tuning of the terahertz passband using a square-loop metamaterial based on a W-doped $VO_{2}$ thin film," Appl. Phys. Express 12, 032007 (2019).   DOI
17 F. Fan, W.-H. Gu, S. Chen, X.-H. Wang, and S.-J. Chang, "State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping," Opt. Lett. 38, 1582-1584 (2013).   DOI
18 P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund Jr., "Metal-insulator phase transition in a $VO_{2}$ thin film observed with terahertz spectroscopy," Phys. Rev. B 74, 205103 (2006).   DOI