• Title/Summary/Keyword: Insulation systems

Search Result 418, Processing Time 0.027 seconds

Development and Verification of Thermal Control Subsystem for High Resolution Electro-Optical Camera System, EOS-D Ver.1.0 (고해상도 전자광학카메라 EOS-D Ver.1.0의 열제어계 개발 및 검증)

  • Chang, Jin-Soo;Kim, Jong-Un;Kang, Myung-Seok;Yang, Seung-Uk;Kim, Ee-Eul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.921-930
    • /
    • 2013
  • Satrec Initiative successfully developed and verified a high-resolution electro-optical camera system, EOS-D Ver.1.0. We designed this system to give improved spatial and radiometric resolution compared with EOS-C series systems. The thermal control subsystem (TCS) of the EOS-D Ver.1.0 uses heaters to meet the opto-mechanical requirements during in-orbit operation and uses different thermal coatings and multi-layer insulation (MLI) blankets to minimize the heater power consumption. Also, we designed and verified a refocusing mechanism to compensate the misalignment caused by moisture desorption from the metering structure. We verified the design margin and workmanship by conducting the qualification level thermal vacuum test. We also performed the verification of thermal math model (TMM) by comparing with thermal balance test results. As a result, we concluded that it faithfully represents the thermal characteristics of the EOS-D Ver.1.0.

Design Checklist for Self-sufficient Zero Energy Solar House(ZeSH) (에너지자립형 태양열 주택의 설계 및 시공 방법 체크리스트 수립 연구)

  • Yoon Jongho;Baek Namchoon;Yu Changkyun;Kim Jongil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.416-421
    • /
    • 2005
  • Most of solar system dissemination has been focused on domestic hot water system of which utilization to a building is relatively simple and safe than solar heating system. Through the survey on a cause of solar house dissemination failure in Korea, we conclude that design integration and systematic approach method for technology application are the most important element for a successful solar house. KIER(Korea Institute of Energy Research) and Hanbat National University have started new project on a development of Zero energy Solar House, called ZeSH which can be sustained just by natural energy without the support of existing fossil fuel. This is the 1st phase research of 10 years long-term ZeSH plan which develops a low-cost and $100\%$ self sufficient ZeSH. The goal of 1st phase ZeSH research is to get a $70\%$ self sufficiency only in thermal loads. Actual demonstration house, named KIER ZeSH I was designed and constructed as a result of 1st phase research work in the end of 2002. Various innovative technologies such as super insulation, high performance window, passive and active solar systems, ventilation heat recovery system are applied and evaluated to the KIER ZeSH I. A lot of computer simulations had been conducted for the optimal design and system integration in every design steps. Considering all the results from detailed hourly computer simulation, it is expected that at least $70\%$ self-sufficiency in thermal loads which is 1st phase target value can be excessively achieved in actual demonstration house. Besides, many valuable findings from the design and analysis to construction could be established such as collaboration method among the participants, practical design and construction techniques for system integration and the others. The purpose of this paper is to introduce the main findings through the development of KIER ZeSH I project. Practical guidelines in every design step for new low- or zero- energy solar house is proposed as result.

  • PDF

The development of fuel processor for compact fuel cell cogeneration system (소형 열병합 연료전지 연계형 연료처리시스템 개발)

  • Cha, Jung-Eun;Jun, Hee-Kwon;Park, Jung-Joo;Ko, Youn-Taek;Hwang, Jung-Tae;Chang, Won-Chol;Kim, Jin-Young;Kim, Tae-Won;Kim, In-Ki;Jeong, Young-Sik;Kal, Han-Joo;Yung, Wang-Rai;Jung, Woon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.323-327
    • /
    • 2009
  • To extract hydrogen for stack, fuels such as LPG and LNG were reformed in the fuel processor, which is comprised of desulfurizer, reformer, shift converter, CO remover and steam generator. All elements of fuel processor are integrated in a single package. Highly active catalysts (desulfurizing adsorbent, reforming catalyst, CO shift catalyst, CO removal catalyst) and the various burners were developed and evaluated in this study. The performance of the developed catalysts and the commercial ones was similar. 1 kW, 5 kW class fuel processor systems using the developed catalyst and burner showed efficiency of 75 %(LHV, for LNG). The start-up time of the 1 kW class fuel processor was less than 50 minutes and its volume including insulation was about 30 l. The start-up time of 3 kW and 5 kW class fuel processors with the volume of 90 l and 150 l, respectively, was about 60 minutes. In the case of LPG fuel, efficiency, volume and start-up time of 1kW class fuel processor showed 73 %(LHV), < 60 l and < 60 min, respectively. Advanced fuel processor showed more highly efficiency and shorter start-up time due to the improvement of heat exchanger and operating method. 1 kW and 3 kW class fuel processors have been evaluated for reliability and durability including with on/off test of developed catalysts and burner.

  • PDF

Development and Performance Test of SOFC Co-generation System for RPG (SOFC를 이용한 가정용 열병합 발전시스템 개발 및 성능시험)

  • Lee, Tae-hee;Choi, Jin-Hyeok;Park, Tae-Sung;Choi, Ho-Yun;Yoo, Young-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.361-364
    • /
    • 2009
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 cells with $10{\times}10cm^2$ area and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water. Recently KEPRI developed stacks using $15{\times}15cm^2$ cells and tested them. KEPRI will develop a 5 kW class CHP system using $15{\times}15cm^2$ stacks by 2010.

  • PDF

Fabrication Technology of Turbo Charger Housing for Riser Minimizing by Fusion S/W Application and its Experimental Investigation (압탕 최소화를 위한 터보차저하우징의 융합 S/W 응용 제조기술 및 실험적 검증)

  • Lee, Hak-Chul;Seo, Pan-Ki;Jin, Chul-Kyu;Seo, Hyung-Yoon;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.37 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • The purpose of this study is to increase the part recovery rate (to more than 70%) during the casting of a ductile cast iron turbo charger housing using a heater around the riser. Before creating a casting mold, various runner and riser systems were designed and analyzed with a casting simulation analysis tool. The design variables were the heater temperature, top insulation, riser location, riser diameter and the riser shape. During the feeding from the riser to the part, the reverse model was better than the forward model. When heating the riser (above $600^{\circ}C$), solidification of the riser was delayed and the feeding effect was suitable compared to that without heating. At a higher heating temperature, less solidification shrinkage and porosity were noted inside the part. On the basis of a casting simulation, eight molds were fabricated and casting experiments were conducted. According to the experimental conditions, external and internal defects were analyzed and mechanical properties were tested. The ultimate tensile strength and elongation outcome were correspondingly more than 540MPa and 5% after a heat treatment. In addition, a maximum part recovery rate of 86% was achieved in this study.

The Design Criteria for the Model Development of the New-hanok Type Public buildings - Focused on Expert Opinion Surveys -

  • Park, Joon-Young;Bae, Kang-Won;Kim, So Young;Jung, Kyung-Yoon
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.37-45
    • /
    • 2016
  • Purpose: According to the characteristic of hanok public building, Planning criterion of structure, technology, efficiency, design is needed which can includes various type of new-hanok type public buildings. In this paper, we collect expert opinions to be used as a basis for developing models of New-hanok type Public Buildings. Method: This study was conducted in Research Study and expert surveys. The Part of reviewing Study looked at conception of new-hanok type public buildings model development and overview planning criterion set briefly. Expert surveys were targeted to professors and architects who are related in new-hanok type public buildings model development research. Result: In this study, we suggest improvement direction about planning criterion of new-hanok type public buildings model development based on opinions collected by expert surveys. In conclusion, first, In concept and legal status, it is necessary to adjust clearly than the term and legal status of new-hanok type. Second, various applicability is needed by using new materials and new construction method at the part of planning elements. Third, 'composed structure-convergence type' and 'composed structure-juxtaposed type' should be clearly classified or combined at the part of Setting of type. Forth, improvement on heat insulation, soundproof, waterproof efficiency is demanded to roof, wall, window systems. Fifth, arranging revitalization plan is important.

Fundamental Study on Estimating Compressive Strength and Physical Characteristic of Heat insulation Lightweight Mortar With Foam Agent (기포제 혼입 단열형 경량모르타르의 물리적 특성 및 압축강도 추정에 관한 기초적 연구)

  • Min, Tae-Beom;Woo, Young-Je;Lee, han-Seung
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.89-96
    • /
    • 2010
  • In comparison with ordinary or heavy-weight concrete, light-weight air void concrete has the good aspects in optimizing super tall structure systems for the process of design considering wind load and seismic load by lightening total dead load of buildings and reducing natural resources used. Light-weight air void concrete has excellent properties of heat and sound insulating due to its high amount porosity of air voids. So, it has been used as partition walls and the floor of Ondol which is the traditional Korean floor heating system. Under the condition of which the supply of light-weight aggregates are limited, the development of light-weight concrete using air voids is highly required in the aspects of reduced manufacturing prices and mass production. In this study, we investigated the physical properties and thermal behaviors of specimens that applied different mixing ratios of foaming agent to evaluate the possibility of use in the structural elements. We proposed the estimating equation for compressive strength of each mix having different ratio of foaming agent. We also confirmed that the density of cement matrix is decreased as the mixing amount of foaming agent increase up to 0.6% of foaming agent mixing ratio which was observed by SEM. Based on porosity and compressive strength of control mortar without foaming agent, we built the estimating equations of compressive strength for mortars with foaming agent. The upper limit of use in foaming agent is about 0.6% of the binder amount. Each air void is independent, and size of voids range from 50 to $100{\mu}m$.

A Case Study of Developing Rapid-Hardening Ultra-Low Temperature Adhesives by Mixture Design and Multiple Response Optimization (혼합물 실험계획과 다수 반응변수 최적화를 통한 속경화 초저온접착제 개발 사례)

  • Byun, Jai-Hyun;Seo, Pan Seok;Shin, Ji Eun;Lee, Lyun Gyu;Yeom, Ji Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.757-768
    • /
    • 2014
  • Purpose: In this paper we present a case study of developing fast curing adhesives for insulation material of LNG carriers using an extreme vertices design with four mixture components. Three material properties are considered - shear strength, viscosity, and tensile strength. In the optimization experiment, we used hardness instead of tensile strength due to shortage of specimens. Methods: We employ four-factor extreme vertices design with 19 runs and desirability function approach for simultaneously optimizing three responses. After selecting optimal condition of the mixture components, we do confirmation experiments to verify the reproducibility of the optimal condition under manufacturing circumstance. Results: Simultaneous optimal condition for the three responses, that is, shear strength, viscosity, and harness is obtained. At the optimal condition, confirmation experiments are executed in manufacturing circumstance. The variation for the shear strength is not satisfactory, which is due to the variation of the humidity. Conclusion: At the optimal condition three material properties are satisfactory. To reduce the variability for the shear strength, robust design is needed.

Design and Self-sustainable Operation of 1 kW SOFC System (1kW 고체산화물 연료전지(SOFC) 시스템 설계 및 자열운전)

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Young-Sung;Nam, Suk-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • KEPRI (Korea Electric Power Research Institute) has studied planar type solid oxide fuel cell (SOFC) stacks using anode-supported cells and kW class co-generation systems for residential power generation. In this work, a 1 kW SOFC system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a SOFC stack made up of 48 cells, a fuel reformer, a catalytic combustor, and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation in that system. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. When the 1 kW SOFC stack was tested using hydrogen at $750^{\circ}C$, the stack power was about $1.2\;kW_e$ at 30 A and $1.6\;kW_e$ at 50 A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_e$ with hydrogen and $1.2\;kW_e$ with city gas respectively. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water.

Evaluation of Air Contaminants Concentrations and Ventilation Systems in Governmental Agency and University Laboratories (국내 정부출연연구기관 및 대학교 실험실 공기 오염물질 농도 및 환기시스템 평가)

  • Ha, Ju-Hyun;Shin, Yong-Chul;Lee, Hyun-Seok;Paik, Samuel Y.;Yi, Gwang-Yong;Lee, Byeong-Ku
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.1
    • /
    • pp.63-69
    • /
    • 2010
  • This study was conducted to compare the concentration of various air contaminants in nine different laboratories during routine activities. Volatile organic compounds (VOC) were sampled and analyzed using NIOSH Method 1500 and asbestos fibers were sampled and analyzed using NIOSH Method 9002 and 7400. Detectable levels of acetone, toluene and ethanol were found in all the laboratories and xylene and n-hexane were detected in eight of the nine laboratories. All the VOC concentrations were well below the Korean Ministry of Labor's Exposure Limit and American Conference of Governmental Industrial Hygienists' (ACGIH) Threshold Limit Values (TLVs). Total VOC concentrations at the university laboratories were significantly higher than those at governmental agency laboratories. Airborne fiber concentrations were below 0.01 fibers/cc, while the concentration of chrysotile was 2% in insulation materials sprayed on the ceiling of one laboratory. While all the governmental agency laboratories (n=4) had fume hoods, two out of the five university laboratories did not have fume hoods. The capture velocity of half of the fume hoods were below the maintenance standard(0.4 m/sec). In conclusion, the study suggests that the current controls in place at both university and government agency laboratories are not sufficient in limiting exposure to harmful chemicals to non-detectable levels, though they appear to be adequate in protecting workers to levels below applicable occupational exposure limits. The study also suggests that researchers working in university laboratories may be exposed to greater levels of contaminant than those working in government agency laboratories.