• 제목/요약/키워드: Insulation systems

검색결과 419건 처리시간 0.032초

Development of a Mobile Robot System for Visual Inspection under Hot Environment

  • Park, Sang-Deok;Lee, Ho-Gil;Kim, Hong-Seok;Son, Woong-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1506-1510
    • /
    • 2004
  • A mobile robot system is developed to inspect the condition of industrial facilities under hot environment. The mobile robot is equipped with internal and external heat insulating material, an internal cooling mechanism, two CCD cameras, wireless communication devices for both the control and image signals, and an embedded controller. The portable controller is equipped with two joysticks for both the mobile robot and the inspection CCD camera, an LCD monitor, and several buttons. The developed mobile robot travels on the internal floor in hot furnaces by operators' joystick operation, captures the images of facilities in the furnaces using a zoom CCD camera, and sends the images to the portable controller through wireless communication. The mobile robot can be operated without any problem under hot environment less than 400$^{\circ}C$ in 30 minutes. This kind of automatic inspection mobile robot can be helpful to prevent significant troubles of industrial facilities without danger of human beings under harmful environment.

  • PDF

Development of the Controlled Switching Device for a Cirrcuit Breaker

  • Kim, Ik-Mo;Kim, Myung-Chan;Choi, Young-Chan;Ryu, Sung-Sic;Kim, Dong-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.558-560
    • /
    • 2004
  • Studies on the controlled switching method have been done to prevent the power system surges which cause the insulation deterioration and electro magnetic compatibility (EMC) problems during closing and opening of a circuit breaker. The controlled switching method controls the closing and tripping time in coincidence with the voltage or current to suppress switching surge. It is used to switch condenser bank, no load transformer, and shunt reactor. In this study, basic concept of the controlled switching is introduced, and also the test is performed to find parameters of the controlled switching in a 24kV vacuum circuit. And then, the control device hardware using TMS320C31 DSP has been designed and manufactured. It has been found that the application of IT technology to a circuit breaker is very effective to depress the switching surge.

  • PDF

고압계통 지락고장시 인체안전에 미치는 영향 (Effects of Ground Faults on the Safety of Persons in High Voltage Distribution Systems)

  • 강성만;김한수;이종철;이주철
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 추계학술대회 논문집
    • /
    • pp.195-197
    • /
    • 2007
  • This paper presents experimental results on the safety of persons due to a ground fault in 22.9 kV-Y distribution system In order to evaluate the touch voltages due to internal ground faults in a step down transformer based on the newly prescribed KS C IEC 60364 standard series, the verification tests in a 22.9 kV multi-grounded neutral system were carried out From the experimental results, it was found that there will be significant potential rise jeopardizing LV equipment insulation in case of separate grounding between HV and LV system and the effective measures against hazardous touch voltages due to a IN side ground fault in the common grounding system between HV and LV system are proposed. As a consequence, it was found that the equipotential bonding is an important prerequisite for the effectiveness of the protective measures for the safety of persons in the common ground system between 22.9 kV-Y and low-voltage grounding system.

  • PDF

초고온 시스템용 SiCN 마이크로 구조물 제작 (Fabrication SiCN micro structures for extreme high temperature systems)

  • 판 투이 탁;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.216-216
    • /
    • 2009
  • This paper describes a novel processing technique for the fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for extreme microelectromechanical system (MEMS) applications. A polydimethylsiloxane (PDMS) mold was formed on an SU-8 pattern using a standard UV photolithographic process. Next, the liquid precursor, polysilazane, was injected into the PDMS mold to fabricate free-standing SiCN microstructures. Finally, the solid polymer SiCN microstructure was cross-linked using hot isostatic pressure at $400^{\circ}C$ and 205 bar. The optimal pyrolysis and annealing conditions to form a ceramic microstructure capable of withstanding temperatures over $1400^{\circ}C$ were determined. Using the optimal process conditions, the fabricated SiCN ceramic microstructure possessed excellent characteristics includingshear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}\;{\Omega}$, and BDV (1.2 kV, minimum). Since the fabricated ceramic SiCN microstructure has improved electrical and physical characteristics compared to bulk Si wafers, it may be applied to harsh environments and high-power MEMS applications such as heat exchangers and combustion chambers.

  • PDF

Breakdown Properties of Coolant for HTS Apparatus Operating at Cryogenic Temperature

  • S.M. Baek;J.M. Joung;Kim, S.H
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.52-55
    • /
    • 2003
  • For the dielectric insulation design of any high temperature superconducting (HTS) apparatus in the electrical power systems, the breakdown properties of cryogenic coolants such as $LN_2$ are an important factor of the insulating engineering. Therefore, this paper presented an experimental investigation of breakdown phenomena in $LN_2$ under AC voltage. And we studied the breakdown properties of LN2 with decreasing temperature. Also, the Weibull plots of the breakdown voltage of subcooled $LN_2$ at 65 K for the needle-plane electrode with electrode distance d= 10 mm are studied. The dependence of breakdown voltage for needle-plane and pancake coil-pancake coil electrode on temperature is illustrated. The experimental data suggested that the breakdown voltage of L$N_2$ depend strongly on the temperature of $LN_2$. The breakdown characteristics of $LN_2$ under quasi-uniform and non-uniform electrical field for temperature ranging from 77 K to 65 K were clarified.

Automatic Assembly Task of Electric Line Using 6-Link Electro-Hydraulic Manipulators

  • Kyoungkwan Ahn;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1633-1642
    • /
    • 2002
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. The maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulator because hydraulic manipulators have the advantage of electric insulation. Meanwhile it is relatively difficult to realize autonomous assembly tasks particularly in the case of manipulating flexible objects such as electric lines. In this report, a discrete event control system is introduced for automatic assembly task of electric lines into sleeves as one of the typical task of active electric power lines. In the implementation of a discrete event control system, LVQNN (linear vector quantization neural network) is applied to the insertion task of electric lines to sleeves. In order to apply these proposed control system to the unknown environment, virtual learning data for LVQNN is generated by fuzzy inference. By the experimental results of two types of electric lines and sleeves, these proposed discrete event control and neural network learning algorithm are confirmed very effective to the insertion tasks of electric lines to sleeves as a typical task of active electric power maintenance tasks.

1kW급 고체산화물 연료전지 발전시스템 자열운전 (Self-sustainable Operation of a 1kW class SOFC System)

  • 이태희;최진혁;박태성;유영성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.57-60
    • /
    • 2008
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 single cells and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen after pre-treatment process, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water.

  • PDF

Sheath Circulating Current Analysis of a Crossbonded Power Cable Systems

  • Jung, Chae-Kyun;Lee, Jong-Beom;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권3호
    • /
    • pp.320-328
    • /
    • 2007
  • The sheath in underground power cables serves as a layer to prevent moisture ingress into the insulation layer and provide a path for earth return current. Nowadays, owing to the maturity of manufacturing technologies, there are normally no problems for the quality of the sheath itself. However, after the cable is laid in the cable tunnel and is operating as part of the transmission network, due to network construction and some unexpected factors, some problems may be caused to the sheath. One of them is the high sheath circulating current. In a power cable system, the uniform configuration of the cables between sections is sometimes difficult to achieve because of the geometrical limitation. This will cause the increase of sheath circulating current, which results in the increase of sheath loss and the decrease of permissible current. This paper will study the various characteristics and effects of sheath circulating current, and then will prove why the sheath current rises on the underground power cable system. A newly designed device known as the Power Cable Current Analyser, as well as ATP simulation and calculation equation are used for this analysis.

석면 슬레이트 해체작업의 공정분석 및 위험성평가에 관한 연구 (A Study on the Process Analysis and the Risk Assessment for Removal Work of the Asbestos Cement Slate)

  • 오현수;김정민;장성록
    • 한국안전학회지
    • /
    • 제29권6호
    • /
    • pp.137-143
    • /
    • 2014
  • Asbestos is given to a variety of six naturally occurring silicate minerals. These minerals possess high tensile strength, flexibility, resistance to chemical and thermal degradation, and electrical resistance. These minerals have been used for decades in thousands of commercial products, such as insulation and fireproofing materials, automotive brakes, textile products, cement and wallboard materials. When handled, asbestos can separate into microscopic-size particles that remain in the air and are easily inhaled. It is now known that prolonged inhalation of asbestos fibers can cause serious and fatal illnesses including malignant lung cancer, mesothelioma, and asbestosis. Therefore the use of asbestos and asbestos products has dramatically decreased in recent years. Also all constructions including asbestos should be removed under strictly controlled conditions and very tightly implemented health & safety management systems. In this study, the process of the removal work of the asbestos cement slate was analyzed by IDEF-0 modeling and evaluated by 4M risk assessment method. The results show that removal work of the asbestos cement slate was classified five process and eighteen detail process. The risk of safety side the higher than the risk of health side in 4M risk assessment.

A Study on the Condition Monitoring for GIS Using SVD in an Attractor of Chaos Theory

  • J.S. Kang;Kim, C.H.;R.K. Aggarwal
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권1호
    • /
    • pp.33-41
    • /
    • 2004
  • Knowledge of partial discharge (PD) is important to accurately diagnose and predict the condition of insulation. The PD phenomenon is highly complex and seems to be random in its occurrence. This paper indicates the possible use of chaos theory for the recognition and distinction concerning PD signals. Chaos refers to a state where the predictive abilities of a systems future are lost and the system is rendered aperiodic. The analysis of PD using deterministic chaos comprises of the study of the basic system dynamics of the PD phenomenon. This involves the construction of the PD attractor in state space. The simulation results show that the variance of an orthogonal axis in an attractor of chaos theory increases according to the magnitude and the number of PDs. However, it is difficult to clearly identify the characteristics of the PDs. Thus, we calculated the magnitude on an orthogonal axis in an attractor using singular value decomposition (SVD) and principal component analysis (PCA) to extract the numerical characteristics. In this paper, we proposed the condition monitoring method for gas insulated switchgear (GIS) using SVD for efficient calculation of the variance. Thousands of simulations have proven the accuracy and effectiveness of the proposed algorithm.