• Title/Summary/Keyword: Insulation standard

Search Result 309, Processing Time 0.029 seconds

Effect of Clothing Habit on Climatic Adaptation by Female High School Students (여고생 착의습관이 기후적응에 미치는 영향)

  • 안필자
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.5
    • /
    • pp.615-621
    • /
    • 1994
  • This study was carried out to investigate the effect of clothing habit on physiological adaptation to the change of season. The survey of clothing weight in fall '||'&'||' winter for 2 years, the frequency of cold infection in winter and degree of fatigue was performed with 110 female high school students. The actual condition of clothing and the correlations between clothing weight and cold infection, and between the clothing weight and degree of fatigue were suveyed. The results are followed as; 1. The clothing insulation was nearly same to indoor standard clothing insulation in H hun wearing normal clothing, but was higher 2 clo in S hun clothed uniform. Especially in spite of similar enviromental condition the clothing weight, minimum '||'&'||' maximum and variation of clothing weight for 2 years were showed to be heavier in S hun than H hun. Also indoor thermal sensation felt by the subjects indicated "cold", and the difference between clothing insulation and standard clothing insulation showed increase gradually. 2. L group was indicated to be lower in cold infaction ratio than M '||'&'||' H group, and the correlation between clothing group and cold infection ratio was recognized to be significant (p<0.05). And H hun and L-H group showed to be lower in cold infection ratio than S hun, H-L group. 3. The coefficience between clothing weight and degree of fatigue was recognized to be significant (p<0.05).

  • PDF

Variation of Energy Consumption in Barracks through Simulation by Year of Completion

  • Choi, Doo-Sung;Jeon, Hung-Chan;Cho, Kyun-Hyong;Yoo, Jeong-Seong
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • Purpose: The purpose of this study is to analyze & suggest the variation of energy consumption consequent on thermal insulation performance strengthening from early 2000s when modernization of barracks began until the present targeting a large barracks. Method: To carry out this research, this study surveyed the standard of thermal insulation by year, which is being applied to a barracks by conducting literature search, and selected the standard model for a barracks. Also, this study analyzed energy consumption by year & region by performing simulation(ECO2)of the selected standard model. Result: As a result, it was analyzed that in case of a building which was completed in 2015, the energy consumption for air-conditioning & heating, lighting, and hot water supply over the year 2000 reduced by 11% on the average in central district, 10% on the average in southern district, and 17% on the average in Jeju, respectively.

The Flashover Characteristics of Test Electrodes against Clearance of Air Insulation for 765kV Transmission Line (765kV급 송전선로 공기절연거리 설정을 위한 시험전극의 섬락전압 특성)

  • Kim, Y.T.;Kim, Y.B.;Lee, H.H.;Kim, J.M.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1337-1340
    • /
    • 1995
  • For the purpose of rational design of air insulation, it is need to experiment with similar to real shape test object and conform the characterisics. But basic distances of air insulation of transmission line, tower, etc. can be acquired from flashover characteristic of rod-rod, rod-plane electrodes. In this paper, before field test of 765kV transmission line for determination of distances of phase to ground insulation, we execute lightning, switching impulse test with test electrod(rod-rod, rod-plane) against clearances of air insulation. Each tests use up-down method and consist of 30 times flashover test. Flashover data treatment program and air correction program following IEC 60-1(1987) standard were completely builted.

  • PDF

An experimental study on sound insulation of building elements of the hotel near airport (공항 인근 건물(호텔)에서의 벽체구조의 차음성능에 관한 연구)

  • 이성호;정갑철;양관섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.579-585
    • /
    • 2002
  • This study has measured and evaluated the sound insulation of building elements of the hotel near airport. That measurement was made in both the actual site and laboratory. The differences of sound insulation performance in between granite and double glass were measured. Moreover, the difference of sound insulation was analyzed. For the measurement, this study has tried several methodologies, and analyzed the differences respectively. The results from this analysis were applied to produce a design guides for sound insulation to prevent external noise and to make more silent indoor space which satisfied the standard rate of noise.

  • PDF

Gas detection of transformer oil according to degradation characteristic of insulation material (절연물의열화에 의한 변압기유의 가스분석)

  • Hwang, Kyu-Hyun;Seo, Ho-Joon;Lee, Suck-Woo;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.574-574
    • /
    • 2005
  • To found out the degradation characteristic of transformer insulation, insulation material was depisited into transformer oil and heated. Due to the thermal stress which added to insulation, the density of carbon dioxide which included in transformer oil was mesured by using the gas density detection equipment of gas sensor and air circulation method. As a result, it didn't match with the transformer supervision standard. But it was found that as thermal stress increased, the density of carbon dioxide propertionally increased.

  • PDF

Airborne Sound Insulation Performance of Window and Indoor Noise Level in the Balcony Expanded Apartments

  • Park, Hyeon Ku
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.61-67
    • /
    • 2015
  • Purpose: The balcony in the apartment is important space not only as a fire escape but also as a buffer for heat and sound insulation. However, with the legalization of balcony expansion for residential apartments in Korea in 2006, many households have eliminated the balcony space altogether to increase the inner space, often without sufficient consideration for the effects on the indoor environment. This study examined the sound insulation performance of exterior-facing windows in enclosed balconies and the changes in the indoor acoustic environment due to expansion to provide a basis for appropriate balcony expansion. The apartments for the field test were chosen where two balcony types can be compared, and the sound insulation performance for the eighteen balcony windows was measured. The windows installed were typical double window with thickness 16 mm or 22 mm. Measurements of the weighted standard sound pressure level difference showed a decrease of about 3 dB in sound insulation performance due to expansion. For common exterior noise levels of 70-85 dB(A), the indoor noise level can exceed 45 dB(A), the limit level regulated in Korea. However, it was found that the sound insulation performance of the window and the quality of the construction have more influence on indoor noise levels than balcony expansion itself.

Study on Long-term Performance of Phenolic Foam Insulation through Accelerated Aging Test (가속화 시험을 통한 페놀폼 단열재의 장기성능 비교분석에 관한 연구)

  • Kim, Jin-Hee;Kim, Sang-Myung;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.2
    • /
    • pp.11-23
    • /
    • 2020
  • The application of the high-performance insulation materials for buildings seems to be an essential measure for reducing energy use in buildings. Phenolic foam is a readily available insulation material with thermal conductivity of about 0.018 to 0.020 W/(mK). It has the advantage of higher thermal resistance and better fire resistance compared to other conventional building insulation materials. Insulation material used for building envelope is regarded as one of the decisive factors for building's energy load. Furthermore, the degradation of its thermal performance over time increasingly affects the building's energy use demand. Generally, the life span of conventionally built buildings is expected to be more than 50 years, so the long-term performance of insulation materials is critical. This paper aims to evaluate the long-term performance of phenolic form boards through an accelerated aging test. The tests were conducted according to BS EN 13166 and KS M ISO 11561. Based on the results of the accelerated aging test, the thermal performance variation of the material was analyzed, and then its aged value after 25 years was computed. Also, the characteristics of the phenolic foam board's long-term performance were also examined based on the standard testing methods adopted.

Study on Application and Economic Evaluation of New Insulation Material to Confront High Oil Price: Focus on an Apartment (고유가 대응을 위한 신단열재 적용과 경제성평가 연구 : 공동주택을 중심으로)

  • Hyun, Jong-Hun;Kim, Ji-Yeon;Park, Hyo-soon;Choi, Moo-Hyuck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.11
    • /
    • pp.746-751
    • /
    • 2008
  • The best plan to reduce the building energy consumption is that the insulation performance should be improved because the insulation and airtight of building envelopes have an effect on the energy consumption basically. New insulation materials, which have the high performance and are above insulation standard, have been developed steadily. Because there are not studies on the building energy rating system and economic evaluation considering new insulation materials, these matters should be studied. In result alternatives, which applied 6 high performance material each, reduce the annual heating energy and raise the building energy rating. Applying the vacuum insulation material(Case 1, 2) and vacuum or triple glazing can retrieves the investment with $120 and $140$\sim$150 per barrel each.

Efficiency of insulation layers in fire protection of FRP-confined RC columns-numerical study

  • El-Mahdya, Osama O.;Hamdy, Gehan A.;Hisham, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.673-689
    • /
    • 2021
  • This paper addresses the efficiency of thermal insulation layers applied to protect structural elements strengthened by fiber-reinforced polymers (FRP) in the case of fire event. The paper presents numerical modeling and nonlinear analysis of reinforced concrete (RC) columns externally strengthened by FRP and protected by thermal insulation layers when subjected to elevated temperature specified by standard fire tests, in order to predict their residual capacity and fire endurance. The adopted numerical approach uses commercial software includes heat transfer, variation of thermal and mechanical properties of concrete, steel reinforcement, FRP and insulation material with elevated temperature. The numerical results show good agreement with published results of full-scale fire tests. A parametric study was conducted to investigate the influence of several variables on the structural response and residual capacity of insulated FRP-confined columns loaded by service loads when exposed to fire. The residual capacity of FRP-confined RC column was affected by concrete grade and insulation material and was shown to improve substantially by increasing the concrete cover and insulation layer thickness. By increasing the VG insulation layer thickness 15, 32, 44, 57 mm, the loss in column capacity after 5 hours of fire was 30%, 13%, 7% and 5%, respectively. The obtained results demonstrate the validity of the presented approach for estimation of fire endurance and residual strength, as an alternative for fire testing, and for design of fire protection layers for FRP-confined RC columns.

Thermal Insulation of Protective Clothing Materials in Extreme Cold Conditions

  • Mohamed Zemzem;Stephane Halle;Ludwig Vinches
    • Safety and Health at Work
    • /
    • v.14 no.1
    • /
    • pp.107-117
    • /
    • 2023
  • Background: Thermophysiological comfort in a cold environment is mainly ensured by clothing. However, the thermal performance and protective abilities of textile fabrics may be sensitive to extreme environmental conditions. This article evaluated the thermal insulation properties of three technical textile assemblies and determined the influence of environmental parameters (temperature, humidity, and wind speed) on their insulation capacity. Methods: Thermal insulation capacity and air permeability of the assemblies were determined experimentally. A sweating-guarded hotplate apparatus, commonly called the "skin model," based on International Organization for Standardization (ISO) 11092 standard and simulating the heat transfer from the body surface to the environment through clothing material, was adopted for the thermal resistance measurements. Results: It was found that the assemblies lost about 85% of their thermal insulation with increasing wind speed from 0 to 16 km/h. Under certain conditions, values approaching 1 clo have been measured. On the other hand, the results showed that temperature variation in the range (-40℃, 30℃), as well as humidity ratio changes (5 g/kg, 20 g/kg), had a limited influence on the thermal insulation of the studied assemblies. Conclusion: The present study showed that the most important variable impacting the thermal performance and protective abilities of textile fabrics is the wind speed, a parameter not taken into account by ISO 11092.