• Title/Summary/Keyword: Insulation sheath

Search Result 29, Processing Time 0.02 seconds

A study or Metallic sheath for Extra-high voltage XLPE cable (초고압 XLPE 케이블 금속 차폐층 고찰)

  • Choi, C.S.;Lee, K.J.;Chung, M.Y.;Kwon, B.I.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1652-1654
    • /
    • 1994
  • The Extra-high voltage XLPE cable is characterized by low transmission loss, large capacity, and high reliability. Conventionally, for XLPE cables of l54kV and above, aluminium sheath was used to be moisture barrier (thus preventing water tree deterioration of the insulation) and to protect cable core from physical stresses. However, as transmission capacity of the cable increases, so does the cable diameter and the corresponding aluminium sheath outer diameter and thickness. As a result, eddy-current loss in the sheath is increased, limiting the maximum current capacity of the cable itself. As an alternative to aluminium sheath, we have adopted stainless steel sheath with non-magnetic properties and a large resistivity, The new XLPE cable with stainless-steel sheath (CSZV cable) has drastically reduced eddy-current loss in the sheath.

  • PDF

Effectiveness Evaluation According to Change of IJ Joint Box Location and Grounding System in Underground Transmission System (지중송전계통에서 절연접속함 위치 및 접지방식 변경의 효용성 평가)

  • Ko, Kwang-Man;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.247-253
    • /
    • 2015
  • Dielectric breakdown accidents have been mainly occurred in the vicinity of service entrance section in underground power transmission systems. One cause among them is due to the excessive component value of sheath located around service entrance of cable. In this paper, as one of the alternative to prevent these accidents, the change of cross bond grounding system and the location change of IJ(Insulation Joint) are suggested. Also, to evaluate effectiveness of this changing system, circulating current and induced voltage of sheath were analyzed in steady and transient state. By comparison of the analytical results for the several possible changing systems, a grounding system and location of IJ which has the smallest sheath component values is proposed. In this paper, analysis to evaluate the proposed system is carried out by EMTP/ATPDraw. It can be used as a valuable operational material to prevent accident of the service entrance section in underground power transmission system.

A Study on The Optimal Design of SiC Ceramic Heater (SiC계 세라믹 발열체의 최적 설계에 관한 연구)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1631-1634
    • /
    • 2009
  • Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. Temperature rising time of sheath heater is 1.1 times faster than SiC ceramic heater. Heating insulation of SiC ceramic heater is 2.7 times larger than sheath heater. If SiC ceramic heater is one body type of a product application, contact resistance will decrease. I think that temperature initial rising time is faster than now. The more SiC ceramic heater is used for a long time, the more economic benefit is larger in the view point of heat insulation.

Sheath Circulating Current Analysis of a Crossbonded Power Cable Systems

  • Jung, Chae-Kyun;Lee, Jong-Beom;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.320-328
    • /
    • 2007
  • The sheath in underground power cables serves as a layer to prevent moisture ingress into the insulation layer and provide a path for earth return current. Nowadays, owing to the maturity of manufacturing technologies, there are normally no problems for the quality of the sheath itself. However, after the cable is laid in the cable tunnel and is operating as part of the transmission network, due to network construction and some unexpected factors, some problems may be caused to the sheath. One of them is the high sheath circulating current. In a power cable system, the uniform configuration of the cables between sections is sometimes difficult to achieve because of the geometrical limitation. This will cause the increase of sheath circulating current, which results in the increase of sheath loss and the decrease of permissible current. This paper will study the various characteristics and effects of sheath circulating current, and then will prove why the sheath current rises on the underground power cable system. A newly designed device known as the Power Cable Current Analyser, as well as ATP simulation and calculation equation are used for this analysis.

Effects of Reclosing for Insulation Coordination in 345kV Combined Transmission Lines (345kV 혼합송전선로에서 재폐로가 절연설계에 미치는 영향)

  • Lee, Jong-Beom;Jung, Chae-Kyun;Lim, Kwang-Sik;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.847-853
    • /
    • 2010
  • This paper describes switching surge analysis for reclosing decision in 345kV combined transmission line with XLPE power cable. Reclosing operation should be decided based on the detailed technical analysis in combined transmission line because this line includes power cable section which is week on insulation. Insulation of power cable can be breakdown at the week point in case of reclosing moment. Therefore the detailed analysis has to be carried out by considering several conditions such as length ratio of power cable section, arrestor, inserting resistance, charging rate, grounding resistance, etc.. On the other hand sheath voltage on IJ(Insulated Joint) is analyzed to check dangerous condition on cable cover. Analysis is performed by EMTP/ATP. Analysis results show that reclosing can be operated as the single line-to-ground fault occurs on overhead line in 345kV combined transmission line, if the inserting resistance is considered before the operation of main circuit breaker.

A Study on the Fabrication and Characteristics of Ceramic Heater Apparatus with High Efficiency (고효율 세라믹 발열체 제작 및 특성 시험에 관한 연구)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1275-1278
    • /
    • 2012
  • Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of electroconductive ceramic composites. Temperature rising time of sheath heater is 1.1 times faster than SiC ceramic heater. Heating insulation of SiC ceramic heater is 2.7 times larger than sheath heater. If SiC ceramic heater is one body type of a product application, contact resistance will decrease. I think that temperature initial rising time is faster than now. The more SiC ceramic heater is used for a long time, the more economic benefit is larger in the view point of heat insulation.

Economical Estimation of SiC Ceramic Heater (SiC계 세라믹 발열체 경제성 평가)

  • Cho, Hyun-Seob;Ryu, In-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.450-453
    • /
    • 2009
  • Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. Compare economic estimation of SiC ceramic heater with sheathe heater are as followings. (1) Temperature rising time of sheath heater is 1.1 times faster than SiC ceramic heater. (2) Heating insulation of SiC ceramic heater is 2.7 times larger than sheath heater. If SiC ceramic heater is one body type of a product application, contact resistance will decrease. I think that temperature initial rising time is faster than now. The more SiC ceramic heater is used for a long time, the more economic benefit is larger in the view point of heat insulation.

  • PDF

Simulation of Breakdown in XLPE Cable Using FEM (유한요소법을 이용한 XLPE 케이블내의 절연파괴 모의실험)

  • 장인범;김용주;한기만;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.313-316
    • /
    • 1995
  • In this study, in case the lead sheath of XLPE cable (radius : 15cm, inner conductor radius : 5cm, insulation paper raidius : 6cm, dc voltage : 1MV) is harmed, so that breakdown process by inhomogeneous eletric field is simulated with Finite Element Method. The result of simulation showed that defect of lead sheath layer caused breakdown.

  • PDF

A Study on the Performance Change of Insulation Sheath Due to Accelerated Degradation of IV and HIV Insulated Wire (IV 및 HIV 절연전선의 가속열화에 따른 절연피복의 성능변화에 관한 연구)

  • Choi, Su-Gil;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.114-123
    • /
    • 2019
  • The paper relates to a study on the changes in performance of insulation sheath resulting from accelerated degradation of IV and HIV insulated wire. To assume insulation degradation of IV and HIV insulated wire, accelerated life tests using Arrhenius equation were conducted among accelerated life test models, and experimental samples of 0 year, 10 years, 20 years, 30 years, and 40 years in equivalent life were produced. Whereas the maximum tensile load were increased as accelerated degradation of IV and HIV insulated wire progressed, elongation percentage, rupture time, and flexibility of insulated wires were found to be gradually reduced. According to the additional surface analysis results for the insulated wires per equivalent life using a scanning electron microscope, mechanical properties of the insulator were observed to be reduced as insulation degradation resulting from aging progressed since phenomena such as formation of crystalline structures and perforation, etc. occurred on the sample surface with progression of accelerated degradation. Consequently, institutional replacement of insulated wires and preparation of repair times considering performance degradation of the insulator installed inside buildings are considered necessary in order to prevent in advance the risks of electrical fire resulting from degradation in insulation performance.