• Title/Summary/Keyword: Insulation level

Search Result 342, Processing Time 0.028 seconds

A study on the analytical method for calculating the inside air temperature transient and energy consumption load of the building using two different controllers (두개의 제어기를 사용한 건물 내부의 온도변화와 에너지소비량을 계산하기 위한 해석적 연구)

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.1
    • /
    • pp.82-90
    • /
    • 2012
  • Four different buildings having various wall construction are analyzed for the effect of wall mass on the thermal performance and inside building air and wall temperature transient and also for calculating the energy consumption load. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equations is obtained using the Laplace transform method, Bromwich and modified Bromwich contour method. A simple dynamic model using steady state analysis as simplified methods is developed and results of energy consumption loads are compared with results obtained using the analytical solution. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from two different locations in Korea: Daegu having severe weather in summer and winter and Jeju having mild weather almost all year round. There is a significant wall mass effect on the thermal performance of a building in mild weather condition. Buildings of heavyweight construction with insulation show the highest comfort level in mild weather condition. A proportional controller provides the higher comfort level in comparison with buildings using on-off controller. The steady state analysis gives an accurate estimate of energy load for all types of construction. Finally, it appears that both mass and wall insulation are important factors in the thermal performance of buildings, but their relative merits should be decided in each building by a strict analysis of the building layout, weather conditions and site condition.

The Sugge Voltage restraint of induction motor using low-loss snubber circuit (저손실 스너버 회로를 이용한 유도전동기의 서지전압 억제)

  • Cho, Man-Chul;Mun, Sang-Pil;Kim, Chil-Yong;Kim, Ju-Yong;Shu, Ki-Young;Kwon, Soon-Kurl
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.473-477
    • /
    • 2007
  • The development of advanced Insulated Gate Bipolar Transistor(IGBT)has enabled high-frequency switching operation and has improved the performance of PWM inverters for motor drive. However, the high rate of dv/dt of IGBT has adverse effects on motor insulation stress. In many motor drive applications, the inverter and motor are separated and it requires long motor feds. The long cable contributes high frequency ringing at the motor terminal and it results in hight surge voltage which stresses the motor insulation. The inverter output filter and RDC snubber are conventional method which can reduce the surge voltage. In this paper, we propose the new low loss snubber to reduce the motor terminal surge voltage. The snubber consists of the series connection of charging/discharging capacitor and the voltage-clamped capacitor. At IGBT turn-off, the snubber starts to operate when the IGBT voltage reaches the voltage-clamped level. Since dv/dt is decreased by snubber operating, the peak level of the surge voltage can be reduced. Also the snubber operates at the IGBT voltage above the voltage-clamped level, the snubber loss is largely reduced comparing with RDC snubber. The proposed snubber enables to reduce the motor terminal surge voltage with low loss.

  • PDF

A Study on Characteristics and Modeling of CMV by Grounding Methods of Transformer for ESS (ESS용 변압기의 접지방식에 의한 CMV 모델링 및 특성에 관한 연구)

  • Choi, Sung-Moon;Kim, Seung-Ho;Kim, Mi-Young;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.587-593
    • /
    • 2021
  • Since 2017, a total of 29 fire accidents have occurred in energy storage systems (ESSs) as of June 2020. The common mode voltage (CMV) is one of the electrical hazards that is assumed to be a cause of those fire accidents. Several cases of CMV that violate the allowable insulation level of a battery section are being reported in actual ESS operation sites with △-Y winding connections. Thus, this paper evaluates the characteristics of CMV. An ESS site was modeled with an AC grid, PCS, and battery sections using PSCAD/EMTDC software. As a result of a simulation based on the proposed model, it was confirmed that characteristics of CMV vary significantly and are similar to actual measurements, depending on the grounding method of the internal transformer for PCS. The insulation level of the battery section may be severely degraded as the value of CMV exceeds the rated voltage in case of a grounding connection. It was found that the value of CMV dramatically declines when the internal transformer for PCS is operated as non-grounding connection, so it meets the standard insulation level.

Continuous Variable Regression Analysis for Frequency of Damage Analysis in Heat Pipe (연속형 변수 회귀분석을 통한 열수송관 파손빈도 분석)

  • Myeongsik Kong;Jaemo Kang;Sungyeol Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.47-52
    • /
    • 2023
  • In order to efficiently maintain heat pipes operated by district heating operators, the facility history and damage history data built by the operator are used to identify key independent variables that are related to the occurrence of damage. Afterwards, the correlation with the frequency of damage was analyzed, and a basic model for estimating the frequency of damage was derived. Considering the correlation with the estimation model based on the use time currently being used by domestic and foreign district heating operators, a simple regression analysis basic model was presented as the independent variable with the highest correlation between continuous variables such as the use time, pipe diameter, burial depth, and insulation level of monitoring system, and the frequency of damage. The remaining independent variables were reflected as factors that modify and supplement the basic model. As a result of the analysis, as in previous research cases, it was confirmed that the analysis model between use time and frequency of damage had the highest correlation between the two variables and could be used as a basic model. Pipe diameter, burial depth, and insulation level of monitoring system information have also been confirmed to have a correlation with the frequency of damage, so they can be used as factors to supplement the basic model.

Annual Base Performance Evaluation on Cell Temperature and Power Generation of c-Si Transparent Spandrel BIPV Module depending on the Backside Insulation Level (스팬드럴용 투광형 결정계 BIPV창호의 후면단열 조건에 따른 연간 온도 및 발전성능 분석 연구)

  • Yoon, Jong-Ho;Oh, Myung-Hwan;Kang, Gi-Hwan;Lee, Jae-Bum
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.24-33
    • /
    • 2012
  • Recently, finishing materials at spandrel area, a part of curtain-wall system, are gradually forced to improve thermal insulation performance in order to enhance the building energy efficiency. Also, Building Integrated Photovoltaics(BIPV) systems have been installed in the exterior side of the spandrel area, which is generally composed of windows. Those BIPVs aim to achieve high building energy efficiency and supply the electricity to building. However, if transparent BIPV module is combined with high insulated spandrel, it would reduce the PV efficiency for two major reasons. First, temperature in the air space, located between window layer and finishing layer of the spandrel area, can significantly increase by solar heat gain, because the space has a few air density relative to other spaces in building. Secondly, PV has a characteristics of decreased Voltage(Voc and Vmp) with the increased temperature on the PV cell. For these reasons, this research analyzed a direct interrelation between PV Cell temperature and electricity generation performance under different insulation conditions in the spandrel area. The different insulation conditions under consideration are 1) high insulated spandrel(HIS) 2) low insulated spandrel(LIS) 3) PV stand alone on the ground(SAG). As a result, in case of 1) HIS, PV temperature was increased and thus electricity generation efficiency was decreased more than other cases. To be specific, each cases' maximum temperature indicated that 1) HIS is $83.8^{\circ}C$, 2) LIS is $74.2^{\circ}C$, and 3) SAG is $66.3^{\circ}C$. Also, each cases yield electricity generation like that 1) HIS is 913.3kWh/kWp, 2) LIS is 942.8kWh/kWp, and 3) SAG is 981.3kWh/kWp. These result showed that it is needed for us to seek to the way how the PV Cell temperature would be decreased.

Application of Finite Element Method to Floor Impact Vibration Analysis in the Apartment Buildings (공동주택의 바닥 충격 진동 해석을 위한 유한요소법 응용)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.387-390
    • /
    • 2005
  • Finite element method was applied to the vibration analysis of concrete slab system in apartment building. To save the time and cost the 2 dimensional finite element model was proposed. At first, experimental results show that sound peak components to influence the overall level and the rating of floor impact sound insulation were coincident with natural frequencies of the reinforced concrete slab. Second, there is linear relationship between the impact sound pressure level and vibration acceleration level. Third, 2 dimensional finite element model was enough to analyze the vibration analysis of floor structure system.

  • PDF

Prediction of Floor Impact Sound by Measuring the Vibration Acceleration Level on the Interior Structures of Receiving Room in Apartment Buildings (수음실 내 구조체의 진동량 계측을 통한 바닥충격음레벨 예측)

  • 김명준;김흥식;김하근
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.3-9
    • /
    • 2003
  • In an apartment building, the impact sound from upstairs has been regarded as a main source of noise causing discontentment among occupants. To set the optimum design for sound insulation. it is nesessary to suggest the useful tools or technique that predict the floor impact sound. The purpose of this study is to investigate the applicability of the theory of sound radiation. We measured the vibration acceleration levels on the interior structures and predicted the sound pressure level of the room by using them. The result show that the predicted value, in general, were in good agreement with the measured values within 5∼10% in error rate.

An Experimental Study on the Acoustic Characteristic of Korean Traditional Houses in Chonnam Province (전남 지방 전통주택의 음향특성에 관한 실험적 연구)

  • Lee, Tai-Gang;Kim, Hyung-Ryul;Kim, Hang;Choi, Eun-Suk;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.686-689
    • /
    • 2005
  • This study aims to analyzed the acoustics characteristics of Korean Traditional Houses in Chonnam Province varied with lay out and floor plane to reflect the way of control for environmental condition. These houses are surveyed the reverberation time and level difference between rooms of the main living room and other main floored room, master room and kitchen. As a result, the reverberation time of traditional rooms are below 0.6 second, and the sound insulation performance of Korean traditional door are mostly very low grade with D-15. The level difference between rooms are low grade not to meet minimum class except between main living room and master room away from main living building.

  • PDF

An Study on the Sound Attenuation of Audible Fire Alarm Device in Apartment Buildings (공동주택에서의 화재 경보음 전달특성에 관한 연구)

  • Lee, Min-Joo;Kim, Myung-Jun;Yoon, Myong-O
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.658-661
    • /
    • 2005
  • In many fire emergencies, the auditory fire alarm signals are very important to save the occupant's life. But as the sound insulation of building elements has been improved, it is more difficult for occupant to recognize the fire alarm signals when the audible fire alarm worked. This is the first study to show the sound attenuation of audible fire alarm device in apartments. We measured and analyzed the sound attenuation level in seven units. The result showed that it was not sufficient to detect the sound from the fire alarm device in bedrooms. Whether the fire alarm device worked or not, the differences of sound level in bedrooms were below 1$\sim$10dBA. To give the minimum sound level 60dBA in bedrooms, the proper sound levels from alarm device installed in livingrooms were suggested using computer simulation.

  • PDF

Measurement of HTS tapes Properties under Over current condition (고온초전도선재의 과전류 통전특성 측정)

  • 이광연;임형우;이희준;차귀수;이지광
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.263-266
    • /
    • 2002
  • Rises of temperature and resistance are observed in HTS tapes under over current condition. In this paper, we measured HTS tapes properties under low-over current condition with a little temperature rise as well as high-over current condition with a large temperature rise. According to the results of measurement, rises of temperature and resistance strongly depend on insulation level and duration of over current condition.

  • PDF