• Title/Summary/Keyword: Insulation Strength

Search Result 641, Processing Time 0.029 seconds

Test on the Mechanical Characteristics of Glass Fiber Membrane (유리섬유 막재의 역학적 특성에 관한 시험)

  • Park, Kang-Geun;Yoon, Sung-Kee
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.2
    • /
    • pp.55-62
    • /
    • 2008
  • Membrane structures are now used in various ways throughout the world with the merits of free shape, lightness, durability, sunlight transmittance and homogeneous material. The development of new membrane material opened up new possibility for the design of new building structures. Recently it was mainly used PVC, PVF, PVDF, PTFE, ETFE membrane for using the roofing material of membrane structures. Some problems of membrane materials have fire proofing, lack of strength, self cleaning capacity, tear resistance, durability, heat insulation, sound insulation and elasticity. For the solution of this problems, it will be tested the mechanical properties of membrane material about tensile strength, tearing resistance, etc.

  • PDF

The Estimation of the Dielectric Strength Decrease of the Solid-solid Interfaces by using the Applied Voltage to Breakdown Time Characteristics

  • Shin, Cheol-Gi;Bae, Duck-Kweon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.278-282
    • /
    • 2007
  • In the complex insulation system that is used in extra high voltage(EHV) devices, according to the trend for electric power equipment of high capacity and reduction of its size, macro interfaces between two different bulk materials which affect the stability of insulation system exist inevitably. In this paper, the dielectric strength decrease of the macro interfaces between epoxy and ethylene propylene diene terpolymer(EPDM) was estimated by using the applied voltage to breakdown time characteristics. Firstly, the AC short time dielectric strength of specimens was measured at room temperature. Then, the breakdown time was measured under the applied constant voltage which is 70% of short time breakdown voltage. With these processes, the life exponent n was determined by inverse power law, and the long time breakdown voltage can be evaluated. The best condition of the interface was LOS(low viscosity(350 cSt) silicone oil spread specimen). When 30 years last on the specimens, the breakdown voltage was estimated 44% of the short time breakdown voltage.

A Study on the Performance of Foamed Concrete for Cores Material of Metal Vacuum Insulation Panel (금속진공단열패널의 심재용 기포콘크리트의 성능에 관한 연구)

  • Hong, Sang-Hun;Kim, Bong-Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.417-423
    • /
    • 2020
  • In order to reduce cooling and heating, which is 40% of the energy consumption of buildings, it is important to improve the insulation of the skin. In order to improve the existing insulation, research is being conducted to apply a vacuum insulation panel(VIP) to buildings. However, VIP cannot be repaired, so we considered the metal vacuum insulation panel. Since the core of the metal vacuum pressure and have low thermal conductivity, foam concrete is adopted. However, preliminary experiments confirmed that the time to reach 0.001torr differs depending on the amount and nature of the bubbles. This effect is determined by the type of foaming agent and the density of the bubble slurry, the vacuum delivery time is determined to be the optimum foam concrete conditions are necessary. Therfore, this study aims to present basic data applicable to core materials by measuring vacuum delivery time and thermal conductivity change according to the foaming agent type and foam slurry density of foam large concrete which is core material of metal vacuum insulation panel. Experimental results and analysis show that compressive strength can be used regardless of the type of foam, In terms of thermal conductivity, it is stable to use vegetable foaming agents at 0.9g/㎤ or less. In terms of the vacuum delivery time, the foaming agent appeared similar regardless of the type of foaming agent, but it is considered suitable to use vegetable foaming agent based on compressive strength and thermal conductivity.

Development of Optimum Shape Forming Technology of Angle Ring and Cap for 154 kV Transformer Insulation (154 kV급 변압기 절연물 앵글링과 캡의 최적성형 기술 개발)

  • Suh, Wang-Byuck;Kim, Jong-Won;Ryu, Jung-Soo;Bae, Dong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.880-885
    • /
    • 2010
  • The Angle Ring and Cap which is called pressboard are settled at the primary and secondary coil winding of 154 kV transformer that can reduce effectively distance of insulation. As it has not manufactured pressboard of Angle Ring and Cap for high voltage grade, insulation components industry especially high voltage transformer has not participate in a competition with worldwide yet. That's why is difficult to make an specialized shape of insulation components of high voltage grade. Therefore it has finally completed to make an deformation manufacturing utility using an bellowed special analysis tools. This study that uses various analysis program determining optimum shape about insulation of Angle Ring and Cap which is related life of high voltage transformer. In addition to develop forming equipment with an specialized five steps pressing. That is also based on the mechanical strength evaluation and test, it is investigated optimized processing components.

The Comparisons of the Surface Flashover Characteristics at $SF_6$ and the various insulation media. ($SF_6$와 이종절연재의 연면방전 특성 비교)

  • Lee, Jung-Hwan;Park, He-Rie;Park, Sung-Gyu;Choi, Young-Kil;Lee, Kwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1400_1401
    • /
    • 2009
  • In this paper describes the comparisons of the surface flashover characteristics according to the change of the insulation media by experimental GIS(Gas Insulated Switchgear) chamber in accordance with change of pressure(P) and electrode distance(d). The using insulation medias are $SF_6$, Dry-Air, I-Air(Imitation Air, $N_2$ : $O_2$ = 79[%] : 21[%]), $N_2:O_2$ mixture gas and pure $N_2$. In this study, in order to compare the properties $SF_6$ and order insulation gas, we investigated the properties of the various insulation media with a knife to knife electrode under ac high voltage application. The gas pressure was changed from 1 to 5[atm]. as a result, it was found that dielectric strength is $SF_6$ > I-Air > Dry-Air and the best environmental preservation gas is Dry-Air.

  • PDF

A Experimental Investigation on the PD Characteristics depending on the various Artificial Voids In Epoxy Insulator (에폭시 절연체의 보이드 크기에 따른 부분방전 특성연구)

  • Choi, C.K.;Lee, J.S.;Kim, J,T.;Koo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1853-1855
    • /
    • 2000
  • An experimental investigation has been performed in order to understand the $\Phi$-q-n characteristics related to the PD taking place from the various size of artificial defects inserted in epoxy insulation. In this purpose, PD has been detected simultaneously by two different methods such as commercialized PD detector(TE571) and our detection system using self designed CT type sensor. Under the presence of void in epoxy insulation, PD has been initiated at the voltages between 16kV and 20kV which are much lower than the dielectric strength of epoxy insulation (130kV/mm$\sim$l50kV/mm). And also it is revealed that $\Phi$-q-n characteristics have been observed to be dependent upon the size of the artificial defects. Throughout this work, the on site applicability of the self designed Sensor has also been proved by comparing the results with those from the commercialized PD detector. And more one, considerable basic data regarding the insulation, diagnosis could be provided to understand the presence of the voids possibly inserted into the epoxy insulation system of the power apparatus.

  • PDF

Reduction of the Electric Field Concentration at the Triple Junction of the Vacuum Interrupter by Using the Application of Functionally Graded Material (기능성 경사 재료의 적용을 통한 진공 인터럽터의 삼중점 전계 완화)

  • Choi, Seung-Kil;Gu, Chi-Wuk;Ju, Heung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.630-635
    • /
    • 2015
  • A vacuum Interrupter (VI), a core part that composes the breaking part of medium-voltage vacuum circuit breaker (VCB), has the excellent insulation performance and arc-extinguishing capability. $SF_6$ gas had been used for the external insulation of VIs since the dielectric strength of $SF_6$ gas is superior to that of other insulation gases. However, because of environmental problems related with global warming, a solid-insulated technology was recently researched. The functionally graded material (FGM), as changing spatially the distribution of the relative permittivity inside an insulator, can reduce the electric field stress at the specific region. Especially, the external insulation performance of the VI with the molded FGM insulator is greatly improved as compared with that of the existing VI or the VI with a new external shield. In this paper, the effectiveness of this FGM insulator is verified by the numerical simulation.

Insulation Design for a 13.2kV/630A High-Tc Superconducting Fault Current Limiter (13.2kV/630A급 고온초전도 한류기의 절연설계)

  • Kang, Hyoung-Ku;Lee, Chan-Joo;Ko, Tae-Kuk;Seok, Bok-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.941-942
    • /
    • 2007
  • The superconducting fault current limiter (SFCL) consists of superconducting coil for limiting the fault current and cryogenic cooling system for keeping the coil in superconducting condition. The study on the insulation design for superconducting coil and cryogenic cooling system should be elaborately performed to develop a high voltage SFCL. In this paper, insulation design of solenoid coil for 13.2kV/630A SFCL is performed through the AC dielectric breakdown test and lightning impulse dielectric strength test. The dependence of dielectric characteristics on the magnitude of liquid nitrogen pressure is also investigated. Through the investigation, it is verified that dielectric characteristics of sub-cooled nitrogen are strongly enhanced by the pressurization. The electrical insulation design of 13.2kV/630A SFCL is performed by applying the experimental results. The successful insulation design for development of 13.2kV/630A SFCL is confirmed by AC dielectric breakdown tests.

  • PDF

Evaluation of Insulation Performance and Structural Integrity of an IMO Type C LNG Storage Tank (IMO Type C LNG 저장 탱크의 단열성능 및 구조적 건전성 평가)

  • Park, Heewoo;Park, Jinseong;Cho, Jong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.1-7
    • /
    • 2021
  • Restrictions on the emissions of nitrogen oxides, sulfur oxides, carbon dioxide, and particulate matter from marine engines are being tightened. Each of these emissions requires different reduction technologies, which are costly and require many pieces of equipment to meet the requirements. Liquefied natural gas (LNG) fuel has a great advantage in reducing harmful emissions emitted from ships. Therefore, the marine engine application of LNG fuel is significantly increasing in new ship buildings. Accordingly, this study analyzed the internal support structure, insulation type, and fuel supply piping system of a 35 m3 International Maritime Organization C type pressurized storage tank of an LNG-fueled ship. Analysis of the heat transfer characteristics revealed that A304L stainless steel has a lower heat flux than A553 nickel steel, but the effect is not significant. The heat flux of pearlite insulation is much lower than that of vacuum insulation. Moreover, the analysis results of the constraint method of the support ring showed no significant difference. A553 steel containing 9% nickel has a higher strength and lower coefficient of thermal expansion than A304L, making it a suitable material for cryogenic containers.

Electrical Insulation for Superconducting Apparatus (초전도 기기의 전기절연)

  • 곽동주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.11-14
    • /
    • 1989
  • Some experimental studies on the dielectric strength characteristics of organic material under compressive stress associated with high magnetic fields and of liquid coolant in the presence of thermally induced bubble, which might be generated at unexpected quench of immersed-cooling superconducting devices, was performed to obtain the basic data on the electrical insulation design for superconducting apparatus. PET and liquid nitrogen were used as test mediums.

  • PDF