• Title/Summary/Keyword: Insulation Curing

Search Result 98, Processing Time 0.031 seconds

Temperature Control of Mass-Concrete Structure with Pipe Cooling or Sheet Curing. (시트양생 및 파이프 쿨링에 의한 매스콘크리트 구조물의 온도제어)

  • 차홍윤;김은경;김래현;신치범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.263-267
    • /
    • 1995
  • The usual methods for the temperature control of mass-concrete structures include the use of low-heat cement, pre-cooling, post-cooling, or sheet curing. In order to control the heat of hydration during the construction of mass-concrete structures, the combination of the above methods is commonly employed. For the construction of mass-concrete structures such as massive pier or anchor, it is necessary to control the curing temperature with pipe cooling. In this study, the method of analysis on the effect of pipe of was proposed to prevent the thermal cracking due to heat of hydration In addition the effect of covering the concrete surface with blanket insulation was investigated. The results of the present study may be useful for the prediction of curing temperature of mass-concrete structures and the reasonable construction management.

  • PDF

Reduction of Insulation thickness for EHV XLPE power cable (초고압 XLPE 전력케이블 절연두께 저감화)

  • Lee, Ki-Soo;Choi, Woong;Choi, Young-Hun;Choi, Bong-Nam;Kim, Do-Young;Yun, Duck-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2271-2273
    • /
    • 1999
  • The manufacturing technology of XLPE power cable ( e.g. gas curing, triple common extrusion, clean room, super-clean compound, etc.) had been developed in 1960's and the design parameter of insulation thickness for EHV XLPE power cable at present was determined in 1960's. But, the quality of XLPE power cable has been improved up to now. The re-evaluation of design parameter for insulation thickness reductions is required and so we performed weibull plotting test using model cable. This paper describes the evaluation details of the insulation characteristics according to weibull plotting test.

  • PDF

A Study on the Strength Properties and the Temperature Curve of Winter Concrete According to the Difference of Curing Method in Mock-up Test (실물부재시험에서의 양생방법 차이에 따른 한중콘크리트외 온도이력 및 강도특성에 관한 연구)

  • Kim, Young-Jin;Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.541-548
    • /
    • 2003
  • This study is to investigate the temperature curve and development of compressive strength due to the curing conditions and to evaluate the optimum curing condition of test specimens showing the same development of strength to that of real structures in cold weather. The results of temperature curve with curing conditions in mock-up tests showed the trend of decrease plain concrete with insulation form, plain concrete with heating, concrete with accelerator for freeze protection, and control concrete in turn. The strength development of plain concrete of inside and outside of shelter showed the very slow strength gains due to early freezing, but that of concrete with accelerator for freeze protection showed the gradual increase of strength with time. From this, it is clear that accelerator for freeze protection has the effects of reducing the freezing temperature and accelerating the hardening under low temperature. Strength test results of small specimens embedded in members and located in insulation boxes at the site are similar to that of cores drilled from the members at the same ages, thus it is clear that these curing methods are effective for evaluation in-place concrete strength.

Effects of Post Cure Conditions on Thermal Characteristics of A1$_2$O$_3$ Filled Epoxy Resin Composite System (A1$_2$O$_3$ 충전된 에폭시 수지 복합재료계의 후기 경화조건에 따른 열적특성)

  • Cho, Young-Shin;Shim, Mi-Ja;Kim, Sang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.227-230
    • /
    • 1998
  • The effects of post curing conditions on thermal properties of alumina filled epoxy resin system DGEBA/MDA/SN were investigated. As the post curing time increased at 15$0^{\circ}C$, the glass transition temperature increased from 121 to 124, slightly. As the heating rate increased, high thermal decomposing temperature (T$_{d}$) and most decomposing temperature (T$_{p}$) increased. For the case of post-cured system at 15$0^{\circ}C$ for 4 days showed lower values than virgin system. At the post curing condition the system must have been thermally degraded.ded.

  • PDF

Effects of Reactive Diluents on the Electrical Insulation Breakdown Strength and Mechanical Properties in an Epoxy System

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.199-202
    • /
    • 2013
  • In order to study the effect of reactive diluents on the electrical insulation breakdown strength and mechanical properties of, a polyglycol and an aliphatic epoxy were individually introduced to an epoxy system. Reactive diluents were used in order to decrease the viscosity of the epoxy system; polyglycol acted as a flexibilizer and 1,4-butanediol diglycidyl ether (BDGE) acted as an aliphatic epoxy, which then acted as a chain extender after curing reaction. The ac electrical breakdown strength was estimated in sphere-to-sphere electrodes and the electrical breakdown strength was estimated by Weibull statistical analysis. The scale parameters of the electrical breakdown strengths for the epoxy resin, epoxy-polyglycol, and epoxy-BDGE were 45.0, 46.2, and 45.1 kV/mm, respectively. The flexural and tensile strengths for epoxy-BDGE were lower than those of the epoxy resin and those for epoxy-polyglycol were lower than those of the epoxy resin.

Micro-Structural Enhancement of XLPE Insulation Using Additive Diffusion Method

  • Park, Se-Eun;Shim, Sung-Ik;Cho, Dae-Hee;Youn, Bok-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.238-239
    • /
    • 2005
  • With the aim of developing XLPE insulation for extra high voltage cable, we investigated the morphology of cross-linked polyethylene. We used a kind of base materials and additives, and controlled curing condition and amount of additives. The effect of addition of additives on morphology of XLPE such as lamellar density, orientation and additive layer were analyzed using TEM analysis. We applied this result to diffused additive amount was analyzed using FT-IR analysis, and the change of microstructure as the degree of additive diffusion was analyzed using TEM analysis.

  • PDF

A Study on the Density and Thermal Conductivity of Rigid Polyurethane Foam According to Mixing Amount (혼합 양에 따른 경질 폴리우레탄폼의 밀도 및 열전도율에 관한 연구)

  • Shin, Joung-Hyeon;Jo, Su-Yeon;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.127-128
    • /
    • 2021
  • Rigid urethane foam is widely applied because it is light and has superior insulation performance compared to insulation materials such as EPS or glass wool. However, it has the disadvantage of being vulnerable to fire. Therefore, in this study, before proceeding with the research to improve the fire resistance of the rigid polyurethane foam, we would like to investigate the change in density and thermal conductivity of the rigid polyurethane foam according to the change in the mixed weight of the main material and the curing agent. It was found that the density increased as the mixed weight increased. The thermal conductivity showed similar values overall. As for the density distribution, the central part was low and the outer part was high.

  • PDF

Development of Eco-friendly Basalt Fiber-reinforced Furan-based Composite Material with Improved Fire and Flame Retardants for Shipbuilding and Offshore Pipe Insulation Cover (조선해양 파이프 단열재 커버 적용을 위한 내화/난연 성능을 갖는 친환경 바잘트섬유 강화 퓨란계 복합재료 개발 연구)

  • Kwon, Dong-Jun;Seo, Hyoung-Seock
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.57-62
    • /
    • 2021
  • As interest in the eco-friendly ships and lightweight equipment is increasing in the shipbuilding and marine industry, composite materials are applied to equipment such as pipes. In this study, a basalt fiber reinforced furan composite (BFC), an eco-friendly material, was manufactured to apply the pipe insulation cover that requires environment-friendly and heat/flame retardant performance. An optimization study of post-curing conditions of BFC was conducted, and experiments and analysis were performed on mechanical strength, heat/flame retardant properties, and affinity properties. Finally, as a result of the study BFC material is proved to be a good candidate to apply pipe insulation cover.

Analysis of Fundamental Properties of Concrete for Rising up Fly Ash Contents (플라이 애시의 치환범위 상향을 위한 콘크리트의 기초적 특성 분석)

  • Han, Cheon-Goo;Park, Yong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.89-96
    • /
    • 2011
  • In this study, increasing the range of replacement rate of FA with concrete properties were analyzed to provide basic data of FA replacement 0-40 % and curing temperature $5-35^{\circ}C$ range. As a result of the increased fluidity in proportion to the increase in FA, but decreased air. Setting time delayed at replacement rate increases and low temperature, simple insulation temperature history of the FA up to 40 % replacement rate increases the maximum temperature was low $8^{\circ}C$, the highest temperature reaching time delay of 13 hours. FA replacement up stream of the curing temperature, compressive strength compared to the higher plane, it was found that improved strength development. In carbonation tests with increasing the replacement ratio of FA carbonation depth was increased. Therefore, continued research on carbonation measures was to be necessary.

  • PDF

A Case Study on Field Construction of Cold Weather Mass Concreting Using Double Bubble Sheets and Hydration Heat Difference Method (이중 버블시트 및 수화발열량차 공법에 의한 한중매스콘크리트의 현장적용 연구)

  • Kim Jong;Yoon Jae-Ryung;Jeon Chung-Keun;Shin Dong-An;Oh Seon-Gyo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.15-18
    • /
    • 2006
  • The test result of mat concrete applying both hydration heat difference and insulation curing method on new construction of Cheongju university educational building are summarized as following. Both fresh concrete and compressive strength properties were satisfied In aimed value. Setting time of concrete incorporating 15% of fly ash(FA) retarded 1.2 hour than control concrete. Temperature history of mali concrete indicated that the highest temperature of center was exhibited at $126^{\circ}C$ after 51 hours while the highest temperature of upper section was $10.6^{\circ}C$ after 46 hours. Temperature Difference between center and surface was managed at less than $6^{\circ}C$ during whole curing period. In addition the temperature of upper section secured more than $3.3^{\circ}C$ while the temperature of outside was indicated at less than $-10^{\circ}C$. Maturity by parts of construction secured more than $30^{\circ}C$ DD higher than outside at 3 days. The more number of times, applying insulation curing method by double bubble sheets, increased, the higher economic effect was secured. Overall it was clear that applying both double bubble sheets and hydration heat difference method on this new construction can resist hydration heat crack, early frost demage and strength decrease. It also significantly contributed quality improvement of cold weather concreting

  • PDF