• Title/Summary/Keyword: Insulation Curing

Search Result 98, Processing Time 0.031 seconds

Value Engineering Approach for Heat Curing Method Under Cold Weather Condition (한중콘크리트 보온양생 공법에 대한 VE분석)

  • Woo, Dae-Hun;Kim, Tae-Cheong;Kim, Jong;Jeon, Chung-Keun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.21-23
    • /
    • 2010
  • This study was conducted to draw various decisive elements of a reasonable heat curing method and to examine the importance in deciding a construction method when constructing cold weather concrete. As a result, the items proposed as important elements at the time of decision of a heat curing method included economy, workability, maintainability, insulation capability, reduced construction period and usability. As a result of importance by items under AHP technique, it was found the most important element was insulation capability, followed by reduced construction period and workability. As a result of comparison of a heat supplying and a heat insulation method by dual bubble sheet differed 2 times as much as a heat supplying method, especially the evaluation degree by insulation capability and reduced construction period was high.

  • PDF

Temperature History of the Wall Concrete Subjected to -10℃ depending on Heat Curing Method (-10℃ 조건에서의 보온양생방법 변화에 따른 벽체 콘크리트의 온도이력)

  • Han, Sang-Yoon;Son, Ho-Jung;Cheong, Sang-Hyun;Ahn, Sang-Ku;Han, Cheon-Goo;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.255-256
    • /
    • 2011
  • This study investigates the effect of a curing condition on the temperature history and strength development of concrete under -10℃. Combination of various curing methods was applied, i.e. a conventional form was combined with compressed insulation, heat panel and heat cable. Results showed that the concrete cured by a single use of a conventional form resulted in serious deterioration of early strength development. However, other concretes cured by the proposed curing methods maintained the temperature of the concretes between 5 and 20℃, and thus resulted in no frost damage.

  • PDF

Curing Temperature of Concrete Using Bubble Sheet with Carbon-based Photothermal Materials (탄소계 광발열 소재 혼입 버블시트를 적용한 콘크리트의 양생온도 특성)

  • Lee, Seung-Min;Lee, Hyeon-Jik;Baek, Sung-Jin;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.45-46
    • /
    • 2023
  • This study examined the curing temperature of concrete with a photothermal insulation sheet to shorten the curing time of concrete as part of construction cost and period reduction. According to the experiment results, the heating performance effect is confirmed through the temperature difference between photothermal insulation sheet and bubble sheet. And it has a high curing temperature in the order of bubble sheet (photo heating material B) > bubble sheet (photo heating material A) > bubble sheet on same layers.

  • PDF

Evaluation of Insulation Characteristics of EHV XLPE Power Cable (초고압 XLPE 전력케이블의 절연특성평가(I))

  • Jeong, K.H.;Baeg, I.J.;Lee, I.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1617-1619
    • /
    • 1998
  • In the nation, 154kV XLPE cable with an insulation thickness of 23mm have been used for transmission lines. The thickness is designed by old parameters which were determined by Kreuger, Oudin et al. in 1960s. By the way, the manufacturing technology has been developed. Especially in extruding and curing process we are using a triple common extruding head and applying gas-curing process. It allows the quality of XLPE cable improved. The paper evaluates the AC minimum insulation breakdown strength of XLPE power cable using model table. We can verify the uplifted insulation quality. And we expects the cable insulation thickness to be reduced applying the new parameter to the cable insulation design.

  • PDF

Physical Properties of Cement System Insulation Using Blast Furnace Slag

  • Seo, Sung Kwan;Park, Jae Wan;Cho, Hyeong Kyu;Chu, Yong Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.61-66
    • /
    • 2018
  • In this study, fabrication method of inorganic insulation were studied to reduce $CO_2$ from buildings. Main materials for inorganic insulation were used cement, blast furnace slag and aluminum powder as foaming agent. Mixing ratio of cement and slag was controlled and physical properties of inorganic insulation were analyzed. When inorganic insulation was fabricated using cement and slag, expanded slurries were not sunken and hardened normally. Pore size was 0.5 - 2 mm; mean pore size was about 1mm in inorganic insulation. Compressive strength of inorganic insulation increased with curing time and increased slightly with cement fineness. However, specific gravity decreased slightly with curing time; this phenomenon was caused by evaporation of adsorptive water. When inorganic insulation was dried at $60^{\circ}C$, compressive strength was higher than that of undried insulation. The highest compressive strength was found with a mixture of cement (50%) and slag (30%) in inorganic insulation. Compressive strength was 0.32 MPa, thermal conductivity was 0.043 W/mK and specific gravity was $0.12g/cm^3$.

Temperature History of Slab Concrete Depending on Insulation Curing Method in Cold Weather Concreting (한중시공시 단열양생방법 변화에 따른 슬래브 콘크리트의 온도이력 특성)

  • Kim Jong-Back;Lim Choon-Goun;Park Koo-Byoung;Kim Seoung-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.17-20
    • /
    • 2005
  • This paper reported the temperature history of concrete placed at deck plate slab under cold climate condition by varying with surface insulating type. No curing sheet and simple insulation curing including non-woven fabric, double layer bubble sheet, the combination of double layer bubble sheet and non-woven fabric dropped temperature below zero within 24 hours, which caused frost damage at early age. On the other hand, the combination of double layer bubble sheet and non-woven fabric and double layer bubble sheet and styrofoam maintained minimum temperature above $4^{\circ}C\;and\;8^{\circ}C$, respectively. Based on core test results compressive strength of concrete with the combination of double layer bubble sheet and non-woven fabric and double layer bubble sheet and styrofoam was higher than those with other curing method due to good insulation effect.

  • PDF

Curing Reaction and Electrical Insulation Property of Epoxy Resin (에폭시 수지의 경화반응과 전기 절연특성)

  • Lee, Jin;Lee, Eun-Hak;Song, Hee-Su;Kim, Jae-Min;Kim, Tae-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.43-46
    • /
    • 1989
  • Epoxy, noticed as a new insulation material for electrical equipments, may become an excellent cured material from the crosslink reaction with some curing agents and accelerators. The characteristics of cured epoxy is determined by the method of lattice formation according to curing method. The purpose of this paper, varing the process of lattice formation by various surrounding temperatures and heating time during the curing process, is to obtain the optimum cured condition for electrical insulation from the results of investigation on the physical and dielectric properties of cured epoxy. In this investigation, it is found that the excessive temperature and heating time brings on the growth of metamorphic methyl and the insulating properties of cured epoxy is decreased by this phenomenon. As a result, it is concluded that the optimum dielectric characteristics can be obtained when cured at a curing temperature at 14$0^{\circ}C$ for one hour.

  • PDF

Field Application of Mass Concrete Applying Hydration Heat Differential Method and Insulation Curing Method (수화발열량차 및 단열양생 공법을 활용한 매스콘크리트의 현장적용)

  • Han, Jun-Hui;Lim, Gun-Su;Shin, Se-Jun;Jeon, Choung-Keun;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.227-228
    • /
    • 2023
  • This study is tocompare and analyze the results of hydration heat analysis and on-field measurements using the method with hydration heat difference and insulation curing method for controlling hydration heat in mass concrete. As a result of the analysis, the temperature difference between the center and the surface was predicted very similarly, and the mass concrete surface was controlled to a safe level when evaluating with a temperature crack index, and after being finished, it was confirmed that there was no hydration crack.

  • PDF

Fundamental Properties of Alumina Cement Mortar by Insulation Curing Method under Low Temperature (저온환경에서 알루미나시멘트를 사용한 모르타르의 단열양생에 따른 기초물성 평가)

  • Park, Jung-Hoon;Ki, Kyoung-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.419-427
    • /
    • 2017
  • In order to examine the possibility of practical use of aluminate cement concrete at low-temperature environment with insulation method, an experimental studies on flowability, setting time, freezing temperature, size variation and compressive strength of the mortar at low-temperature were conducted. Compressive strength was increased in use of CSA, aluminate cement with gypsum. Workability and physical properties were improved by using aluminate cement and gypsum. In addition, freezing resistance and physical properties were improved by applying the insulation curing method. Especially, when alumina cement and gypsum were used together, the insulation curing method was more effective in improving the compressive strength.

The property of inorganic insulation material depending on CSA contents and atmospheric steam curing condition

  • Kim, Tae-Yeon;Chu, Yong-Sik;Seo, Sung-Kwan;Yoon, Seog-Young
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.407-412
    • /
    • 2018
  • In this study, we have made a cement based inorganic insulation material and added CSA (Hauyne Clinker) to reduce the demolding time and enhance the handling workability. CSA contents were varied by 0%, 1%, 3%, 5% and the atmospheric steam curing was tried for enhancing the compressive strength. As the CSA contents are increased to 5%, a rapid reaction of hydration caused the sinking of the slurry. So, the setting-retarder was added to control the reaction of hydration. By this, the sinking of the slurry was controlled but the height of the green body after expansions was a little bit lowered. In the CSA-added slurry, it was possible to demold within 24 hours and in case of CSA 5%-added, the sufficient workability was secured. Atmospheric steam curing (temperatures $-40{\sim}80^{\circ}C$, for 6~10 hrs.) was attempted to improve the compressive strength and found that an excellent strength of 0.25 MPa was achieved at $80^{\circ}C$ for 8 hrs. Specific gravity was about $0.12{\sim}0.13g/cm^3$ and heat conductivity was about 0.045 W/mK in all specimens. This strategy significantly improves the compressive strength of CSA 5%-added specimen up to 25% compared to without CSA added specimen.