• Title/Summary/Keyword: Insulation Circuit

Search Result 190, Processing Time 0.026 seconds

A Study on the Electrical Fire Risk Assessment Methods of LED Lightings for Outdoor (옥외용 LED 조명의 전기화재 위험성 평가기법에 관한 연구)

  • Kim, Hyang-Kon;Kim, Dong-Ook;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.674-679
    • /
    • 2011
  • In this paper, we experimented and analyzed about electric fire risk assessment methods of LED lightings for outdoor. LED lighting is composed of AC power lines, AC/DC converter, DC power lines and LED lamps. There are some risk factors of electric fire in LED lighting such as short circuit between power lines or power line and ground, dielectric breakdown, leakage current, abnormal voltage inflow, poor contacts(connections), etc. As a result of this study, insulation coverings of wire was ignited due to dielectric breakdown between power lines and molten marks were formed in copper conductor. LED lighting was blown out while short circuit, beside that, electrical disorder did not occur. When abnormal voltage was inflowed, electronic components such as varistor, condenser were damaged. Partial heating was produced and insulation was melted and carbonized by arc and heating while poor contacts were happened. We expect that the results of this study would be helpful for electrical safety of LED lightings for outdoor.

A Study on Reducing Conduction Losses and Lossless Snubber Circuit of Full-Bridge DC-DC Converter (FB DC-DC Converter의 도전손실 저감과 무손실 스너버 회로에 관한 연구)

  • Ra, B.H.;Lee, H.W.;Kwon, S.K.;Kim, J.H.;Suh, K.Y.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2665-2667
    • /
    • 1999
  • This Paper proposes a new toplogy snubber circuit of Full-Bridge DC-DC Converter for reducing conduction losses and snubber circuit heating loss. Using Partial Resonent Soft Switching Method and Clamping, studying on a new snubber circuit for reducing losses that a snubber circuit heating loss in the secondly diode rectification side, a switching losses in the primary side of IGBT inverter and conduction losses in the high frequency insulation transformer. In this paper, we present FB DC-DC converter included a new lossless snubber circuit, and then be analyzed and simulated.

  • PDF

Reduction of the Electric Field Concentration at the Triple Junction of the Vacuum Interrupter by Using the Application of Functionally Graded Material (기능성 경사 재료의 적용을 통한 진공 인터럽터의 삼중점 전계 완화)

  • Choi, Seung-Kil;Gu, Chi-Wuk;Ju, Heung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.630-635
    • /
    • 2015
  • A vacuum Interrupter (VI), a core part that composes the breaking part of medium-voltage vacuum circuit breaker (VCB), has the excellent insulation performance and arc-extinguishing capability. $SF_6$ gas had been used for the external insulation of VIs since the dielectric strength of $SF_6$ gas is superior to that of other insulation gases. However, because of environmental problems related with global warming, a solid-insulated technology was recently researched. The functionally graded material (FGM), as changing spatially the distribution of the relative permittivity inside an insulator, can reduce the electric field stress at the specific region. Especially, the external insulation performance of the VI with the molded FGM insulator is greatly improved as compared with that of the existing VI or the VI with a new external shield. In this paper, the effectiveness of this FGM insulator is verified by the numerical simulation.

Recovery Voltage Measurements of Oil-immersed Transformer

  • Li, Ming-Hua;Dong, Ming;Qu, Yan-Ming;Yan, Zhang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.230-234
    • /
    • 2006
  • One of the methods currently being investigated as a possible non-intrusive diagnostic tool for condition monitoring of power transformer and cable is the recovery voltage measurement, which will be improving the ability to detect the content of water concentration and the ageing process in the insulation system and may thus be an indicator of insulation quality and its ageing status. The polarization phenomenon was studied using RVM with oil-paper samples. In order to interpret its mechanism, the Extended Debye model was introduced. With different circuit parameters, various simulation results were gotten. Furthermore, with the test samples of different ageing condition, measurements are accomplished in the lab. On the basis of this experiment as well as theoretical analysis, correlations between polarizations and ageing were analyzed.

Analysis of faust cause & insulation degradation on the electrical equipments for railway (철도용 전기기기의 고장요인 및 절연열화 분석)

  • 왕종배;전한준;박옥정;온정근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.207-210
    • /
    • 2001
  • Electrical equipment for railway is always experiencing wear and degradation by mechanical, electrical and environmental stress in service and the fault or the accident of high voltage main circuit directly causes operation interruption. Particularly propulsion drive of high speed switching inverter takes the form of specific degradation mechanism such as fast rising transient surge, reflective overvoltage and harmonic stress, and it is known that it threatens the long life and the reliability of electrical equipment. In this paper, statistics of fault and accident on main electrical equipment for railway are presented and also insulation degradation mechanism, which governs end life of electrical device, is analyzed. Finally the method of fault respondence and reliability improvement on the main electrical equipments will be reviewed in order to prevent operation interruption.

  • PDF

Comparison between Water and N-Tetradecane as Insulation Materials through Modeling and Simulation of Heat Transfer in Packaging Box for Vaccine Shipping

  • Dao, Van-Duong;Jin, Ik-Kyu;Hur, Ho;Choi, Ho-Suk
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • This study reports on the modeling and simulation of heat transfer in packaging boxes used for vaccine shipping. Both water and n-tetradecane are used as primary insulation materials inside a multi-slab system. The one-dimensional model, which is a spherical model using a radius equivalent to the rectangular geometry of container, is applied in this study. N-tetradecane with low thermal diffusivity and proper phase transition temperature exhibits higher heat transfer resistance during both heating and cooling processes compared to water. Thus, n-tetradecane is a better candidate as an insulating material for packaging containers for vaccine shipping. Furthermore, the developed method can also become a rapid and economic tool for screening appropriate phase change materials used as insulation materials with suitable properties in logistics applications.

The Selection of Appropriate Surge Absorber Value Reducing the Switching Surge of VCB for High Voltage Motor and Surge Measurement (고압전동기용 진공차단기의 스위칭 써지를 저감시키는 써지흡수기의 적정치 선정과 써지측정)

  • Kim, Taek-Soo;Lee, Sung-Chul;Lee, Eun-Woong;Kim, Jong-Kyeom
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.100-102
    • /
    • 1994
  • VCB, with its big arc extinction in very short switching time, produces the high switching surge voltage which may cause the breakdown of motor insulation or acceleration of insulation deterionation. To protect motor winding insulation, we developed the computer algorithm for simulating the surge occurred in VCB by EMTP. And we established the effect of the C-R surge absorber by the surge measurement in the motor-VCB circuit.

  • PDF

Electromagnetic Analysis of 6.6kV Main Transformer for a Vessel (6.6kV급 선박용 고압 건식 변압기 최적 설계를 위한 전자계 해석)

  • Kang Moon Shick;Kim Kyung Ho;Ku Sung Whi;Cho Yun Hyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.818-820
    • /
    • 2004
  • This paper is described the insulation design and 3-D electromagnetic analysis of 6.6kV main transformer for a vessel by F.E.M.. To obtain the optimal design of insulation structure, the electric field stress is analyzed and estimated the proposed model A and B for the characteristics investigation according to the insulation thickness and position. And the performance characteristics of 6.6kV transformer are estimated as the equivalent circuit parameters computed by F.E.M. analysis.

  • PDF

A Study on the Reduction Method and the Analysis of VCB Switching Surge for High Voltage Induction Motor (고압전동식용 진단차식기의 스위칭써지 해석 및 연구)

  • 이은웅;김종겸;김택수;이성철
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.761-769
    • /
    • 1994
  • VCB (Vacuum Circuit Breaker), with the strong arc extinction capability in switching the source of an induction motor, occurs the severe switching surge voltage which can cause the breakdown or the deterioration of motor insulation. Therefore, a method which reduces surge voltage across motor windings is necessary. So, it is analyzed that fast-rise-time surges resulting from VCB switching operations give rise to severe voltage stress on turn insulation. Additionally, the switching surge simulation algorithms using EMTP are developed, and C, R values of surge suppressor minimizing the steep-fronted stress in winding insulation surges are calculated.

Arc Extinguishment for Low-voltage DC (LVDC) Circuit Breaker by PPTC Device (PPTC 소자를 사용한 저전압 직류차단기의 아크소호기술)

  • Kim, Yong-Jung;Na, Jeaho;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.299-304
    • /
    • 2018
  • An ideal circuit breaker should supply electric power to loads without losses in a conduction state and completely isolate the load from the power source by providing insulation strength in a break state. Fault current is relatively easy to break in an Alternating Current (AC) circuit breaker because the AC current becomes zero at every half cycle. However, fault current in DC circuit breaker (DCCB) should be reduced by generating a high arc voltage at the breaker contact point. Large fire may occur if the DCCB does not take sufficient arc voltage and allows the continuous flow of the arc fault current with high temperature. A semiconductor circuit breaker with a power electronic device has many advantages. These advantages include quick breaking time, lack of arc generation, and lower noise than mechanical circuit breakers. However, a large load capacity cannot be applied because of large conduction loss. An extinguishing technology of DCCB with polymeric positive temperature coefficient (PPTC) device is proposed and evaluated through experiments in this study to take advantage of low conduction loss of mechanical circuit breaker and arcless breaking characteristic of semiconductor devices.