• Title/Summary/Keyword: Insulation Circuit

검색결과 189건 처리시간 0.023초

절연물의 열화에 의한 AE신호와 변압기 외함의 AE노이즈 분포 (Distribution Characteristics of AE Signals in Insulation Deterioration and AE Noise in Cast Resin transformer)

  • 이상우;김인식;김이국;박원주;이광식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1865-1867
    • /
    • 2002
  • In this paper, frequency spectra of AE signals detected from respective the insulation deterioration were analysed to under ac high-voltage application using epoxy resin sample and insulation oil. Also, frequency spectra of AE signals generated from the load currents in the actual operating transformer of 500[kVA] under distribution system of 22.9[kVJ] were also analysed to distinguish the AE signals due to void discharges from the magnetic circuit noises in transformer. As the experimental results, we could distinguish the AE signals whether those signals were caused due to the void discharges or due to the magnetic circuit noises by analyzing the frequency spectrum of AE signals.

  • PDF

Fundamental characteristic analysis on 6 T-class high-temperature superconducting no-insulation magnet using turn-distributed equivalent circuit model

  • Liu, Q.;Choia, J.;Sim, K.;Kim, S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권4호
    • /
    • pp.44-48
    • /
    • 2021
  • In order to obtain ultra-high resolution MRI images, research and development of 11 T or higher superconducting magnets have been actively conducted in the world, recently. The high-temperature superconductor (HTS), first discovered in 1986, was very limited in industrial application until mid-2010, despite its high critical current characteristics in the high magnetic field compared to the low-temperature superconductor. This is because HTS magnets were unable to operate stably due to the thermal damage when a quench occurred. With the introduction of no-insulation (NI) HTS magnet winding technology that does not burn electrically, it could be expected that the HTS magnets are dramatically reduced in weight, volume, and cost. In this paper, a 6 T-class NI HTS magnet for basic characteristic analysis was designed, and a distributed equivalent circuit model of the NI coils was configured to analyze the charging current characteristics caused by excitation current, and the charge delay phenomenon and loss were predicted through the development of a simulation model. Additionally, the critical current of the NI HTS magnets was estimated, considering the magnetic field, its angle and temperature with a given current. The loss due to charging delay characteristics was analyzed and the result was shown. It is meaningful to obtain detailed operation technology to secure a stable operation protocol for a 6T NI HTS magnet which is actually manufactured.

A study on charging and electrical stability characteristics with no-insulation and metal insulation in form of racetrack type coils

  • Quach, Huu Luong;Kim, Ho Min
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권3호
    • /
    • pp.13-19
    • /
    • 2020
  • This study presents the experiment and simulation results on the magnetic field response and electrical stability behaviors of no-insulation (NI) and metal insulation with stainless steel tape (MI-SS) which wound in form of racetrack type coils. First of all, the structural design of the racetrack type bobbin was shown along with its parameters. Then, the current-voltage tests were carried out to measure the critical current of both test coils. Also, the sudden discharging and charging tests were performed in the steady state to estimate the decay field time and magnetic field response, respectively. Finally, the overcurrent tests were conducted in the transient state to investigate the electrical stability of these test coils. Based on the experimental results, the contact surface resistances were calculated and applied to the field coils (FCs) of 10-MW-class second generation high temperature superconducting generator (2G HTSG) used in wind offshore environment. The charging delay time and electrical stability for NI and MI-SS HTS FCs of 10-MW-class 2G HTSG are analyzed by the equivalent circuit model and the key parameters which were obtained from the electromagnetic finite element analysis results.

전기콘센트의 사용환경과 전류값에 따른 열적특성 및 절연저항 분석 (Analysis of Thermal Characteristics and Insulation Resistance based on Usage Environment and Current Value of Electrical Socket Outlet)

  • 김경천;김두현;김성철
    • 한국안전학회지
    • /
    • 제34권5호
    • /
    • pp.22-30
    • /
    • 2019
  • In 2018, overload, overcurrent, insulation aging, and a contact failure caused 659 electric fires. There is almost no failure of electrical socket outlets during their manufacturing or installation period. After several months or several years, overload or overcurrent of electrical socket outlets leads to a contact failure or short circuit which causes an electric fire. Therefore, this paper analyzed for thermal characteristics based on a current value and the change in insulation resistance along with a temperature rise caused by electrical socket outlets and the state of laboratory use in workplaces. As a results, regarding the thermal characteristics based on the current value of each installation year, a temperature increase was related to a current value, an installation year, and whether the contact unit is corroded. Insulation resistance began to decrease when a temperature increased to a certain level. With a lapse of installation year, the temperature at which insulation resistance began to decrease was lowered. This paper can be applicable for the survey data about electrical socket outlet induced fire accidents and management guidelines.

800kV GIS용 차단부의 절연특성 및 차단특성 (Insulation and Interruption Characteristics of Interrupter for 800kV GlS)

  • 신영준;박경엽;장기찬;이정희;송원표;강종호;심응보
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1332-1336
    • /
    • 1995
  • In this paper, the procedures and the results of design and manufacturing technologies, mechanical operating tests, insulation tests and short-circuit tests for 800kV 40kA model GCB are presented. The problems to be solved and the countermeasures for the problems are also proposed to improve the performances the model GCB.

  • PDF

진공차단기 다중재발호 써지에 미치는 회로 파라메터의 영향 (The Effect of VCB's Multiple Reignition Surge being Affected due to Circuit Parameters)

  • 김종겸;정종호;조현길;이은웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.15-17
    • /
    • 1994
  • As VCB has many advantages which is an excellent interruption capability, compact structure, easy maintenance and light weight, it has been widely used as a load breaker. But steep-fronted surge voltage due to high frequency extinguishing capability in switching has been occurred. If it impinges into induction motor, it acts on the electrical stress, and causes to deteriorate winding insulation. In this research, in order to protect motor insulation from the steep-fronted reignition surge, the occurring condition, the cause of the reignition surge and the influence of circuit parameters which have been an effect on the occurrence of reignition and multiple reignition surge has been also analyzed.

  • PDF

Control-to-output Transfer Function of the Open-loop Step-up Converter in CCM Operation

  • Wang, Faqiang;Ma, Xikui
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1562-1568
    • /
    • 2014
  • Based on the average method and the geometrical technique to calculate the average value, the average model of the open-loop step-up converter in CCM operation is established. The DC equilibrium point and corresponding small signal model is derived. The control-to-output transfer function is presented and analyzed. The theoretical analysis and PSIM simulations shows that the control-to-output transfer function includes not only the DC input voltage and the DC duty cycle, but also the two inductors, the two energy-transferring capacitors, the switching frequency and the load. Finally, the hardware circuit is designed, and the circuit experimental results are given to confirm the effectiveness of theoretical derivations and analysis.

FEM 시뮬레이션을 이용한 2MVA 몰드변압기 권선간 써지전압 분배 해석 기법 연구 (A Surge Voltage Distribution Analysis of 2MVA Cast Resin Transformer Winding with FEM Simulation)

  • 장형택;신판석
    • 조명전기설비학회논문지
    • /
    • 제25권5호
    • /
    • pp.15-21
    • /
    • 2011
  • This paper presents an analyzing method of the capacitance of the power transformer for initial voltage distribution and insulation design. When a high incoming surge voltage is accidently occurred in windings of transformer, it does not distribute equally in the windings. This phenomenon makes electric field concentration and the insulating material could be break. Initial voltage distribute mostly depends on capacitances between winding to winding or winding to core in the transformer. If the C network can be structuralized into the equivalent circuit model and be calculated each capacitance element value by circuit analysis and FEM(Finite Element Method) simulation program, the transformer designer could know the place where the structure is to be modified or the insulation to be reinforced. This method quickly provides the data of the voltage distribution in each winding to the designer.

고주파 충격에 의한 전자부품 고장 방지 설계 (Designing Electronics for High Frequency Shock)

  • 이종학;강동석;최지호;강영식;이창민
    • 한국소음진동공학회논문집
    • /
    • 제25권10호
    • /
    • pp.700-706
    • /
    • 2015
  • In this study, stability designing electronics mounted on launch vehicle for shock load(low/high frequency band) could be derived. For the low-frequency shock loads, CCA(circuit card assembly) has secured the structural integrity over the best natural frequency techniques. For the high-frequency shock load, the structural integrity could be ensured with applying device such as the insulation pad. When the EAR is applied, insulation effect of part application is good more than whole application.

Analysis of Voltage Stress in Stator Windings of IGBT PWM Inverter-Fed Induction Motor Systems

  • Hwang Don-Ha;Lee Ki-Chang;Jeon Jeong-Woo;Kim Yong-Joo;Lee In-Woo;Kim Dong-Hee
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.43-49
    • /
    • 2005
  • The high rate of voltage rise (dv/dt) in motor terminals caused by high-frequency switching and impedance mismatches between inverter and motor are known as the primary causes of irregular voltage distributions and insulation breakdowns on stator windings in IGBT PWM inverter-driven induction motors. In this paper, voltage distributions in the stator windings of an induction motor driven by an IGBT PWM inverter are studied. To analyze the irregular voltages of stator windings, high frequency parameters are derived from the finite element (FE) analysis of stator slots. An equivalent circuit composed of distributed capacitances, inductance, and resistance is derived from these parameters. This equivalent circuit is then used for simulation in order to predict the voltage distributions among the turns and coils. The effects of various rising times in motor terminal voltages and cable lengths on the stator voltage distribution are also presented. For a comparison with simulations, an induction motor with taps in the stator turns was made and driven by a variable-rising time switching surge generator. The test results are shown.