• Title/Summary/Keyword: Insulating oils

Search Result 50, Processing Time 0.029 seconds

Dissolved Gas Analysis of Environment-Friendly Vegetable Insulating Oils (친환경 식물성 절연유의 유중가스 분석)

  • Choi, Sun-Ho;Kim, Kwan-Sik;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.238-243
    • /
    • 2015
  • The vegetable insulating oils are substitute for the mineral oil in power transformer. Vegetable insulating oils has higher flash/fire point and biodegradability than conventional mineral oils. In this paper, we investigated the dissolved gas analysis of vegetable oils. In the experiment, I had to accelerated aging under the same conditions mineral oil and vegetable oils. Accelerated aging proceeded to about 100% of the life of oil-filled transformer. In addition, we performed gas analysis of insulating oil of accelerated aging progress. The experiment results of the five gases was measured with the exception of Hydrogen and Acetylene. The mineral oil and vegetable oils gas is generated in a similar tendency depending on the accelerated aging. As a result, vegetable oils, can be dissolved gas analysis by method such as mineral oil.

Research of Accelerated Aging According to Long-term Stability of Vegetable Oil (식물성절연유의 가속열화에 따른 장기적 안정성 분석)

  • Choi, Sun-Ho;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1148-1152
    • /
    • 2012
  • The vegetable-based insulating oils are substitutes for mineral oils in oil-filled transformer. The important properties of vegetable insulating oil is their higher flash/fire point and biodegradability than conventional mineral oils. The large oil-filled transformer eliminate the risk of explosion and fire should the transformer fail and oil ignite owing to high flash/fire point of vegetable insulating oil. In addition, higher biodegradability of vegetable insulating oils can let the oil spill damage reduced. In this experiment, the real oil-filled transformers using mineral oil and vegetable oil have accelerated aging. After working on the 100% accelerated aging experiment were conducted comparing the transformer. The hottest-spot temperature using thermal coefficients were calculated to determin the degree of accelerated aging. As a result, apply mineral oil transformer in accordance with the accelerated aging life come to an end. In contrast, vegetable insulating oils showed the opposite characteristics. Vegetable insulating oil compared to the mineral oil are found to be an long life. As a result, the vegetable oil has a long-term stability.

Dielectric Breakdown Voltage According to Flow Velocity and Temperature of Vegetable Oils (식물성절연유의 유동속도와 온도에 따른 절연파괴전압)

  • Choi, Sun-Ho;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.821-826
    • /
    • 2012
  • The streaming electrification process of vegetable insulating oils occurring when the oils contacted with solid material in a high power transformer circulation system seems to cause electrical discharge incidents and may cause failures. We therefore measured the dielectric breakdown voltage tendency of vegetable insulating oils flowing on the surface of the charging device with various velocity and temperature. First, the relation between the velocity and breakdown voltage tendency of vegetable oils, can be explained by volume effect and v-t effect. Second, experimental results show that applied voltage have little effect on dielectric breakdown voltage, when vegetable insulating oils used for large power transformer.

Research of Flow Velocity and BTA According to the Streaming Electrification of Vegetable Insulating Oils (식물성 절연유의 유속과 BTA에 따른 유동대전 현상 연구)

  • Choi, Sun-Ho;Bang, Jeong-Ju;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.791-797
    • /
    • 2012
  • Mineral insulating oils are an important insulating materials in oil-filled transformer. However, the mineral oil is the cause of the environmental problem. The vegetable oils are substitutes for mineral oil because of its biodegradability characteristic. As large size and high rating of the transformer increases, the losses increase at a faster rate. So insulating oil is forced circulation in the oil-filled transformer by using oil pumps. The flow electrification occurs when insulating oil was forced to be circulated. To check the flow electrification, had conducted experiments varying factors. As a result, the streaming electrification could see the changes according to flow velocity, oil temperature and insulation materials.

Research of Flow Electrification Phenomena of the used Environment-Friendly Vegetable Insulating Oils (친환경 식물성절연유의 유동대전현상 연구)

  • Choi, Sun-Ho;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.580-584
    • /
    • 2012
  • The insulating oils perform a cooling and insulation action in electric power transformer. The mineral oil has immanent fire dangerousness and environmental contamination problem. Vegetable insulating oil has higher ignition point, flash point and more excellent biodegradability than conventional mineral oil. In a real oil-filled transformers, some of the power is dissipated in the form of heat. And transformer require the heat to be removed from the winding and insulator by forced convection of the insulating oil. The flow electrification occurs when insulating oil was forced to be circulated. In this paper, influence of temperature, velocity of flow, and insulating pipe and diameter on streaming electrification of vegetable insulating oil was investigated using forced circulation apparatus. Temperature effects were most significant, and it showed a peak in the temperature $30^{\circ}C$ to $35^{\circ}C$ at insulating and copper pipe. The change of flow electrification according to area variety could be checked by change of diameter.

Dielectric Characteristics due to BTA in Insulating Liquids for the Ignition Coil of Automobile (자동차 점화장치용 절연유의 BTA 함유에 따른 유전특성)

  • 신종열;조돈찬;조경순;이수원;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.253-256
    • /
    • 1997
  • Recently, mixture insulating oils is widely used in respect that the physical and the electrical properties is more excellentthan mineral oils, such as alkylbenzene oils and silicone oils, and that cost is lower than alkylbenzene oils or silicone oils. Also, it is important to research for the additive BTA(Benzotriazole) as a study for the phenomena of streaming electrification of mineral oils. So, mixture insulating oils class 7-2, is selected as a specimen in this experiments, and the contents of BTA in specimen are 0.2[ppm], 10[ppm] and 30[ppm], respectively. Then, the physical and the electrical properties for each specimen is made researches.

  • PDF

The Effect of Base Oil Composition on Electronic Insulating Oil's Performances (윤활기유의 조성이 전기절연유의 성능 및 특성에 미치는 영향)

  • 문우식;전정식
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.181-189
    • /
    • 1998
  • In order to investigate the effect of base oil composition on the electronic insulating oil's performances, an experimental study has been conducted using different oils. Owing to their properties, like lower pour point and gas absorbing, naphthenic base oils are used more often than paraffmic base oils for the electronic insulating oil application. Naphthenic and paraffinic base oils are significantly different in their aromatic hydrocarbon content. In this paper, PXE(para xylyl ethane), LAB(linear alkylbenzene), C13 aromatic hydrocarbon mixture and C17 aromatic hydrocarbon mixture are investigated regarding their influence on insulating oil's performances. According to present study, breakdown voltage decreased with increasing aromatic lydrocarbon content in a deep dewaxed paraffmic base oil. However, any changing in the dissipation factor was not recognizable at small treated level. Furthermore, the volume resistance was not influenced by aromatic hydrocarbon content. The gassing tendency was found as a highly sensible property, changing with treating aromatic hydrocarbons. The higher benzene ring content in the hydrocarbon, the better gassing tendency.

  • PDF

Evaluation of Diagnosis Properties of Capacitive Sensor about Deteriorated Pattern of Electrical Insulating Oil (전기 절연유의 열화 패턴에 따른 정전용량형 센서의 열화감지특성 평가)

  • Kim, Ju-Han;Kim, Jae-Hoon;Lee, Won-Yeong;Kim, Pil-Hwan;Han, Sang-Ok;Kim, Han-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1829-1831
    • /
    • 2004
  • This paper described the capacitive sensor for the diagnosis of deterioration of electrical insulating oils applying guard-ring type the 3-terminal electrodes. To measure stable capacitance of the sensor and to determine the design factors of the sensor, we utilized computational analysis, FEM software. This capacitive sensor discern the extent of deterioration measuring relative permittivity of electrical insulating oils. The result of measuring numerous sample, mineral oils, as serviced year, we confirmed an increase in relative permittivity of oils. Moreover, we confirmed the superior characteristics of the sensor as a species, aged pattern of oils and operating temperature.

  • PDF

Analysis on the Diagnosis Characteristics of Electrical Insulating Oil for Power Transformer with 3-terminal Capacitive Sensor (3전극형 전기용량 센서를 이용한 변압기 절연유의 열화감지특성 평가)

  • Kim, Ju-Han;Seo, Pan-Seok;Kim, Pil-Hwan;Kim, Myung-Hwan;Park, Hung-Seok;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2004.11d
    • /
    • pp.89-92
    • /
    • 2004
  • This paper described the capacitive sensor for the diagnosis of deterioration of electrical insulating oils applying guard-ring type the 3-terminal electrodes. To measure stable capacitance of the sensor and to determine the design factors of the sensor, we utilized computational analysis, FEM software. This capacitive sensor discern the extent of deterioration measuring relative permittivity of electrical insulating oils. The result of measuring numerous sample, mineral oils, as serviced year, we confirmed an increase in relative permittivity of oils. Moreover, we confirmed the superior characteristics of the sensor as a species, aged pattern of oils and operating temperature.

  • PDF

Synthesis of POSS Derived Organic-Inorganic Hybrid Esters for Insulating Oil Applications

  • Choi, Kyeong-Min;Harshavardhan, S.J.;Sridhar, Ch.;Vijaykumar, B.V.D.;Kumar, Deepak;Jang, Kiwan;Lee, Man-Sig;Shin, Dong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2769-2773
    • /
    • 2014
  • In this work, a new family of polyhedral oligomeric silsesquioxanes (POSS) based esters have been synthesized that consists eight ester functional groups. These are classified into Type-I and Type-II esters based on the starting materials, octakis(3-chloropropyl)silsesquioxane (Cl-POSS) and octakis(3-hydroxypropyldimethylsiloxy) octasilsesquioxane (OHPS) respectively. These new POSS type ester moieties can be used as insulating oils and oil additives in the transformers and also considered to be alternatives to mineral and vegetable oils that are presently used in the insulation system.