• Title/Summary/Keyword: Insulating Reliability

Search Result 70, Processing Time 0.027 seconds

Mechanical Reliability(Life-Time) Estimation for 25.8kV Eco Solid Insulated Switchgear (25.8kV급 친환경 고체절연차단기(Solid Insulated Switchgear)에 대한 기계적 신뢰성(수명) 평가)

  • Lee, Do-Hoon;Lee, Seog-Won;Park, Seok-Weon;Kim, Young-Geun;Lee, Jhong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.202-205
    • /
    • 2010
  • In this paper, mechanical reliability(Life-time) estimation method for 25.8kV SIS(Solid Insulated Switchgear) has been studied. Recently enacted KEPCO's standard includes clause that have to submit a warrantable reliability data for life-time(over B10 25 years) of an epoxy-solid insulating material. Accordingly, this research was carried out on the ALT(Accelerated Life Test) and Life-Estimation method for SIS's insulating material. Mechanical life-time estimation for SIS's insulating material is to verify reliability for tensile creep & fatigue stress, which is the major mechanical stress of SIS. This study proved that SIS's reliability for mechanical stress and established that confidence for estimation results in further verification test.

Improvement of the Heat Resistance Reliability of an Axial Smoke Exhaust Fan (배연용 축류팬의 내열 신뢰성 향상)

  • Hur, Jin-Huek;Heo, Ki-Moo;Moon, Seung-Jae;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.656-662
    • /
    • 2009
  • In this paper, the heat resistance reliability of an axial smoke exhaust fan was investigated. An axial smoke exhaust fan should be capable of operating at $250^{\circ}C$ for 2 hours. The heat resistance reliability was evaluated by the heat resistance reliability test. A B10 life with a 90% confidence level was estimated to be about 48 minute. The failure occurred in the motor due to high temperature. The main failure mechanisms of the motor were melting of bond and insulating paper and burning of insulating materials in the coil. The heat resistance reliability was improved by changing the way to unite the core and the coil and by replacing the insulating paper and the insulating materials of the coil. A B10 life with a 90% confidence level of a modified axial smoke exhaust fan was estimated to be over 120 minute.

The Effect of Insulating Material on WLCSP Reliability with Various Solder Ball Layout (솔더볼 배치에 따른 절연층 재료가 WLCSP 신뢰성에 미치는 영향)

  • Kim, Jong-Hoon;Yang, Seung-Taek;Suh, Min-Suk;Chung, Qwan-Ho;Hong, Joon-Ki;Byun, Kwang-Yoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • A major failure mode for wafer level chip size package (WLCSP) is thermo-mechanical fatigue of solder joints. The mechanical strains and stresses generated by the coefficient of thermal expansion (CTE) mismatch between the die and printed circuit board (PCB) are usually the driving force for fatigue crack initiation and propagation to failure. In a WLCSP process peripheral or central bond pads from the die are redistributed into an area away using an insulating polymer layer and a redistribution metal layer, and the insulating polymer layer affects solder joints reliability by absorption of stresses generated by CTE mismatch. In this study, several insulating polymer materials were applied to WLCSP to investigate the effect of insulating material. It was found that the effect of property of insulating material on WLCSP reliability was altered with a solder ball layout of package.

  • PDF

Analysis of DC insulation and properties of epoxy/ceramic composites with nanosized ZnO/TiO2 fillers

  • Kwon, Jung-Hun;Kim, Yu-Min;Kang, Seong-Hwa;Kim, Pyung-Jung;Jung, Jong-Hoon;Lim, Kee-Joe
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.332-335
    • /
    • 2012
  • A molded transformer is maintenance-free, which makes it unnecessary to replace the insulating material, like in an oil-filled transformer, because the epoxy, which is a molded insulating resin, does not suffer variations in its insulating performance for heat cycles over a long time, as compared to insulating oil. In spite of these advantages, a molded transformer may still be accessed by the user, which is not good in regards to reliability or noise compared to the oil transformers. In particular, a distrust exists regarding reliability due to the long-term insulating performance. These properties have been studied in regards to the improvement of epoxy composites and molded transformer insulation. There have nevertheless been insufficient investigations into the insulation properties of epoxy composites. In this study, it is a researching of the epoxy for insulating material. In order to prepare the specimens, a main resin, a hardener, an accelerator, and a nano/micro filler were used. Varying amounts of TiO2 and ZnO nano fillers were added to the epoxy mixture along with a fixed amount of micro silica. This paper presents the DC insulation breakdown test, thermal expansion coefficient, and thermal conductivity results for the manufactured specimens. From these results, it has been found that the insulating performance of nano/micro epoxy composites is improved as compared to plain molded transformer insulation, and that nano/micro epoxy composites contribute to the reliability and compactness of molded transformers.

Evaluation of Insulating Reliability in Epoxy Composites by Dielectric Breakdown Properties (절연 파괴 특성을 이용한 에폭시 복합체의 절인 신뢰도 평가)

  • 신철기;김용연;심재환;박건호;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.310-312
    • /
    • 1995
  • In order to evaluate insulating reliability in epoxy composites, breakdown data were experimented in the temperature range of 20[$^{\circ}C$]∼160[$^{\circ}C$]. From these data, various parameters which are used in Weibull distribution could be derived, and using them, the reliability on a breakdown probability was calculated.

  • PDF

Effect of ceramic powder addition on the insulating properties of polymer layer prepared by dip coating method

  • Kim, S.Y.;Lee, J.B.;Kwon, B.G.;Hong, G.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • The mechanical, electrical and thermal characteristics of insulating materials may significantly affect the performance and reliability of electrical devices using superconductors. General method to provide insulating layer between coated conductors is wrapping coated conductor with Kapton tape. But uniform and compact wrapping without failure or delamination in whole coverage for long length conductor is not a simple task and need careful control. Coating of insulating layer directly on coated conductor is desirable for providing compact insulating layer rather than wrapping insulating layers around conductor. Ceramic added polymer has been widely used as an insulating material for electric machine because of its good electrical insulating properties as well as excellent heat resistance and fairy good mechanical properties. The insulating layer of coated conductor should have high breakdown voltage and possesses suitable mechanical strength and maintain adhesiveness at the cryogenic temperature where it is used and withstand stress from thermal cycling. The insulating and mechanical properties of polymer can be improved by adding functional filler. In this study, insulating layer has been made by adding ceramic particles such as $SiO_2$ to a polymer resin. The size, amount and morphology of added ceramic powder was controlled and their effect on dielectric property of the final composite was measured and discussed for optimum composite fabrication.

A Study on Countermeasures and Tracking Phenomena of Polymer (절연용(絶緣用) 고분자재료(高分子材料)의 Tracking현상(現象)과 방지대책(防止對策)에 관한 연구(硏究))

  • Jeon, Young -Jun;Seo, Dong-Chul;Yoo, Jae-Il;Kim, Jin-Woo;Jung, Woo-Kyo;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1235-1238
    • /
    • 1995
  • Electrical property of polymeric insulating plays a key role in the trend of making power apparatus high voltage, and reliability and safety of apparatus in the long term depend on it. There is a recent trend of applying polymeric material to insulating material for outdoor, and particularly it is expected that it may be used partly as a pin insulator. Using as an alternate of insulating material for outdoor, however, it has still many problems to be solved in the field of material such as resistances of environment and tracking. It has been given attention to that the silicon rubbers and the epoxy have recently been used. but the the reliability in the viewpoint of material property becomes an issue. The polymeric materials such as EPDM, Epoxy and PVC have also been used as an insulating materials for outdoor. In this point of view, we studied each tracking phenomenon with test material such as rubber for pin, PVC for powercable used as an insulating material for outdoor, and Epoxy etc. The characteristics of anti tracking shows EPDM>Epoxy>PVC in order in the results. We also know that there is an close relationship between properties of tracking and thermegravimetry.

  • PDF

Data Analysis of Insulating Reliability Properties in Polymer for PCB (PCB용 고분자의 절연 신뢰도 특성 데이터 분석)

  • Park, Geon-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.289-290
    • /
    • 2015
  • 본 연구에서는 인쇄회로기판(PCB)용 재료로 널리 사용되는 고분자에 대해서 와이블 분포 방정식의 시뮬레이션을 수행하여 절연 신뢰도 특성 데이터를 분석하였다. 와이블 분포에 대한 분석 시뮬레이션을 통하여 일반적으로 허용 절연 파괴 확률을 0.1[%] 이하라고 설정하였을 때, 첨가제 배합비를 5종으로 구분한 각 시편에 대해서 인가 전계의 허용치를 각각 계산할 수 있었다.

  • PDF

A Study on the Insulating Properties of Pressboard for High Voltage Transformer Applied the Mold of Eddy Current Loss (와전류 손실을 적용한 금형으로 제조된 초고압 변압기의 프레스보드의 절연 특성 연구)

  • Suh, Wang-Byuck
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.508-512
    • /
    • 2015
  • Some insulating materials are tested and analyzed with variables to obtain the reliable pressboard which is located to core and coil of high voltage transformer. The high voltage transformer is used in electrical power system and operating reliability. Optimization possibility of pressboard shape including electrical insulation performance could be achieved by analysis simulation. Using insulating pressboard, which is made by mold applied eddy current loss, it could be measured the influences of moisture content for electrical properties. As a result, it is to contribute to improve the performance and ensure the reliability of the pressboard by investigating electrical strength according to the variation oil temperature. In addition pressboard thickness is important design factor to ensure electrical strength in high voltage transformer.

Dielectric Characteristics of Magnetic Tunnel Junction

  • Kim, Hong-Seog
    • The Journal of Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.33-38
    • /
    • 2004
  • To investigate the reliability of the MTJs on the roughness of insulating tunnel barrier, we prepared two MTJs with the different uniformity of barrier thickness. Namely, the one has uniform insulating barrier thickness; the other has non-uniform insulating barrier thickness as compared to different thing. As to depositing amorphous layer CoZrNb under the pinning layer IrMn, we achieved MTJ with uniform barrier thickness. Toinvestigate the reliability of the MTJs dependent on the bottom electrode, time-dependent dielectric breakdown (TDDB) measurements were carried out under constant voltage stress. The Weibull fit of out data shows clearly that $t_{BD}$ scales with the thickness uniformity of MTJs tunnel barrier. Assuming a linear dependence of log($t_{BD}$) on stress voltages, we obtained the lifetime of $10^4$years at a operating voltage of 0.4 V at MTJs comprising CoNbZr layers. This study shows that the reliabilityof new MTJs structure was improved due to the ultra smooth barrier, because the surface roughness of the bottom electrode influenced the uniformity of tunnel barrier.

  • PDF