• Title/Summary/Keyword: Instrument Error

Search Result 277, Processing Time 0.035 seconds

Neural-based Blind Modeling of Mini-mill ASC Crown

  • Lee, Gang-Hwa;Lee, Dong-Il;Lee, Seung-Joon;Lee, Suk-Gyu;Kim, Shin-Il;Park, Hae-Doo;Park, Seung-Gap
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.577-582
    • /
    • 2002
  • Neural network can be trained to approximate an arbitrary nonlinear function of multivariate data like the mini-mill crown values in Automatic Shape Control. The trained weights of neural network can evaluate or generalize the process data outside the training vectors. Sometimes, the blind modeling of the process data is necessary to compare with the scattered analytical model of mini-mill process in isolated electro-mechanical forms. To come up with a viable model, we propose the blind neural-based range-division domain-clustering piecewise-linear modeling scheme. The basic ideas are: 1) dividing the range of target data, 2) clustering the corresponding input space vectors, 3)training the neural network with clustered prototypes to smooth out the convergence and 4) solving the resulting matrix equations with a pseudo-inverse to alleviate the ill-conditioning problem. The simulation results support the effectiveness of the proposed scheme and it opens a new way to the data analysis technique. By the comparison with the statistical regression, it is evident that the proposed scheme obtains better modeling error uniformity and reduces the magnitudes of errors considerably. Approximatly 10-fold better performance results.

Sensitivity Analysis of the Optical System for UV-IR Space Telescope

  • Kim, Sanghyuk;Chang, Seunghyuk;Pak, Soojong;Jeong, Byeongjoon;Kim, Geon Hee;Hammar, Arvid
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.56.4-57
    • /
    • 2015
  • We present the optical design and a sensitivity analysis for a wide field of view (FOV) instrument operating at UV and IR wavelengths. The ongoing investigation is performed in collaboration with Omnisys Instruments (Sweden) and focuses on a telluric-limb-viewing instrument that will fly in a low Earth orbit to study mesospheric wave structures over a wide range of horizontal scales in the altitude range 80 - 100 km. The instrument has six wavelength channels which consist of 4 channels of IR and 2 of UV. We are proposing an optical design based on three mirror aplanatic off-axis reflective system. The entrance pupil diameter and effective focal length are 45 mm and 270 mm, respectively. The FOV is $5.5^{\circ}{\times}1^{\circ}$ and the secondary mirror is set for stop. The optical specification is required to have an encircled energy of at least 80 % within a diameter of 21 um. We performed sensitivity analysis for the longest wavelength of 772 nm in consideration of the diffraction limit of system. The results show that tolerance limits for positions and angles of the mirrors are not very sensitive compared with typical error budgets of manufacturing and assembling process. The secondary mirror has the most sensitive tolerance for surface figure of 250 nm in root-mean-square.

  • PDF

A Study on the Development of Raingauge with 0.01 mm Resolution (0.01 mm 급 우량계 개발에 관한 연구)

  • Lee, Bu Yong
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.637-643
    • /
    • 2004
  • A new method of automatic recording raingauge is developed to measure rainfall with 0.01mm resolution. This use two different signals to measure rainfall more accurately compare than other raingauges. One is weight of the tipping bucket with rainfall amount and the other is pulse from tipping bucket reverse. New method applied 1 mm tipping bucket mechanism and install loadcell under tipping bucket mechanism for measuring rainfall weight. Loadcell measure weight of rainfall until 1 mm with 0.01 mm resolution and more than 1 mm than bucket reverse and pulse signal generate, after that loadcell measure weight again. The validation of new instrument was examined in the room 65 mm/hour rainfall rate total 53 mm range. There is below than 1 % error of absolute rainfall amount and 0.01 mm resolution. The field test of instrument was carried out by comparing its measured values with values recorded by weight type and standard type on June 1 2003 at Terrestrial Environmental Research Center at Tsukuba University in Tsukuba of Japan, when it has recorded total amount of 40.58 mm rainfall by standard raingauge and new raingauge recorded 41.032 mm. Same rainfall intensity pattern observed in field observation with weight type raingauge. Rainfall intensity between weight type and Lee-A type raingauge reached 0.9947 correlation in 3 minute average.

The Development of Industrial Laser Range Finder (산업용 레이저 거리 계측기 개발)

  • Bae, Young-Chul;Kim, Chun-Suk;Kim, Yi-Gon;Cho, Eui-Joo;Park, Jong-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.4
    • /
    • pp.228-235
    • /
    • 2007
  • The Laser distance instrument in past was used mainly with military affairs and the helicopter loaded measures the distance with target and the firing body used in the tank. The military suspicion case measurement distance was scope until of tens km consequently from possibility km and under measuring should have been boiled the low error was 5m husbands and wives. Like this under using should have been boiled the effort was being continued the Laser distance instrument will be able to apply in industry from the present paper hereupon and the usability developed verified.

  • PDF

Flight Performance Analysis of the GRACE Inter-Satellite Ranging Instrument (GRACE 위성 간 거리측정기 비행성능 분석)

  • Kim, Jeong-Rae
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.255-264
    • /
    • 2006
  • GRACE (Gravity Recovery and Climate Experiment) is the first dedicated gravity mapping mission. Its primary measurements are the distance changes between two co-orbiting low earth satellites. GRACE is a joint development by NASA and German DLR and was launched in March 2002. GRACE improves the Earth gravity model accuracy by nearly two factor of magnitude over pre-launch models. After brief description of the GRACE primary instrument, inter-satellite ranging system, its flight status and preliminary performance evaluation is presented. Ranging system error models, which were not included in the pre-launch performance model and design specifications, are identified through analyzing the flight data. Base on this analysis, future research topics on the GRACE instrument performance analysis are discussed.

The Development of Visual Inspection for Length Measurement of Injection Product Using Vision System (Vision System을 이용한 사출제품의 길이 측정용 시각검사 System 개발)

  • J.Y. Kim;B.S. Oh;S. You
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.126-134
    • /
    • 1997
  • In this study, We made visual inspection system using Vision Board. It is consist of an illuminator (a fluorescent lamp), image input device (CCD (Charge-Coupled Device) camera), image processing system(Vision Board(FARAMVB-02)), image output device (video monitor, printer), and a measuring instrument(TELMN1000). Length measurement by visual inspection system make use of 100mm guage block(instead of calculating distance between a camera and a object). It measured horizontal and vertical length factor from 400mm to 650mm by increasing 50mm. In this place, measured horizontal and vertical length factor made use of length measure- ment of a injection. A measuring instrument used to ompare a measured length of a injection visual inspection system with it. In conclusion, length measurement of a injection compared a measuring instrument with visual inspecion system using length factor of 100mm gauge block. We find that maximum error of length is 0.55mm when it compar with the measuring value of two devices(FARAMVB-02, TELMN1000). Program of visual inspection system is made up Borland C++3.1.

  • PDF

A Comparative Study on Direct Instrument Methods in Open Channel for Measuring River Water Usage (하천수 사용량 계측을 위한 개수로에서의 직접 계측방법 비교 연구)

  • Baek, Jongseok;Kim, Chiyoung;Lee, Kisung;Kang, Hyunwoong;Song, Jaehyun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.65-74
    • /
    • 2020
  • Continuous and accurate instrument of river water usage is needed for sustainable river water management. Although the instrument methods applicable to each point of use of river water are different, more precise direct instrument methods are required at the point of major open channel. Users of river water should select appropriate direct instrument methods to measure usage, but there is a lack of standards and verification research. In this study, the H-Q rating curve method, ultrasonic method, and microwave method were applied directly to the test basin in the upper basin of Mangyeong river, and the accuracy of measurement data was evaluated by comparing absolute error between discharge data calculated by instrument method. When comparing the calculated discharge of point units, the ultrasonic method showed the best results of the actual measurement. Through continuous instrument, the sum of the daily and monthly units was compared, and the ultrasonic and microwave methods were shown to be highly accurate. Based on the results of this study, it is hoped that the appropriate direct measurement method can be selected according to the importance of the river water use facility, considering that the ultrasonic method and the microwave method are relatively costly compared to the water level-flow relationship method.

Accuracy-improvement simulation of self-mixing semiconductor laser range finder driven by reshaped modulation current

  • Shinohara, Shigenobu;Nobunaga, Kazuhiko;Yoshida, Hirofumi;Ikeda, Hiroaki;Miyata, Masafumi;Nishide, Ken-ichi;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1021-1026
    • /
    • 1990
  • Accuracy improvement of a self-mixing semiconductor laser range finder is predicted by simulation, in which the laser modulation current is reshaped to give an ideal triangular waveform of the optical frequency change. The maximum range measurement error of less than 0.1% in a wide range of O.1m to 1m is expected by the reshaping of the modulation current. Experimental verification of the effect of current reshaping on the linearization of the derivative of the optical frequency change curve is given.

  • PDF

Development of Wireless Instrument for Measuring Cattle's Somatic Information for Stockbreeding Automatization(II) - Development of Single-Channel Wireless Instrument for Measuring Sphygmus - (축산자동화를 위한 가축의 생체정보 무선 계측장치 개발(II) - 단일채널 무선 맥박 계측장치 개발 -)

  • Lee, S.K.;Min, Y.B.;Kim, T.K.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.4
    • /
    • pp.404-409
    • /
    • 1992
  • It is important to measure the somatic informations for stockbreeding automatization. This study was carried out for the development of wireless measurement system of sphygmus in living animals. In meauring sphygmus counting with the single-channel telemety system, a LED-photo transistor sensor showed more sensitivity to the change of blood pressure than a piezo-electric sensor based pressure sensor. The LED-photo transistor sensor resulted ${\pm}1.29%$ of measurement error of sphygmus counting. In the process of transmitting and receiving the blood pressure signal for counting sphygmus, noises were mixed with, and the noises made the counting almost impossible. Auto-correlation analysis technique was applied to the signal data to extract the sphygmus information, and the technique was proved to be very effective.

  • PDF

Simulation Modeling of Range and Acceleration Measurement Instruments for Satellite Formation Flying (편대비행 위성용 거리 및 가속도 관측기 시뮬레이션 모델링)

  • Kim, Jeong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.75-83
    • /
    • 2005
  • NASA/DLR Gravity Recovery and Climate Experiment (GRACE) mission, which consists of two co-orbiting low altitude satellites, is to measure the Earth gravity field with unprecedented accuracy. Its key instruments include inter-satellite ranging systems and three-axis accelerometers. For the preliminary design and requirements analysis, extensive instrument simulation models are developed. These modeling techniques and orbit-gravity field estimation techniques are described.