• Title/Summary/Keyword: Instrument Amplifier

Search Result 41, Processing Time 0.029 seconds

A Low Noise Low Power Capacitive Instrument Amplifier for Bio-Potential Detection (생체 신호 측정용 저 잡음 저 전력 용량성 계측 증폭기)

  • Park, Chang-Bum;Jung, Jun-Mo;Lim, Shin-Il
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.342-347
    • /
    • 2017
  • We present a precision instrument amplifier (IA) designed for bio-potential acquisition. The proposed IA employs a capacitively coupled instrument amplifier (CCIA) structure to achieve a rail-to-rail input common-mode range and low gain error. A positive feedback loop is applied to boost the input impedance. Also, DC servo loop (DSL) with pseudo resistors is adopted to suppress electrode offset for bio-potential sensing. The proposed amplifier was designed in a $0.18{\mu}m$ CMOS technology with 1.8V supply voltage. Simulation results show the integrated noise of $1.276{\mu}Vrms$ in a frequency range from 0.01 Hz to 1 KHz, 65dB SNR, 118dB CMRR, and $58M{\Omega}$ input impedance respectively. The total current of IA is $38{\mu}A$. It occupies $740{\mu}m$ by $1300{\mu}m$ including the passive on-chip low pass filter.

Precision DC Amplifier Design using Semiconductor Chopper (반도체식 Chopper를 이용한 정밀직류증폭기의 설치)

  • 김원기
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.55-64
    • /
    • 1981
  • The important parameters of DC amplifier, which is widely use4 for the medical and engineering fields, are input offset voltage and temperature drift. Chopping amplifier reduces approximately 10% the parameters changing than monolithic operational amplifier. In this study, a chopping amplifier with semiconductor chopper is designed and tested, this chopper is realized by CMOS analog switch and timing circuits. The test results approve that designed amplifier is suitable for precision instrument DC amplifier.

  • PDF

Feedback Analysis of Transcutaneous Energy Transmission with a Variable Load Parameter

  • Yang, Tianliang;Zhao, Chunyu;Chen, Dayue
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.548-554
    • /
    • 2010
  • The transcutaneous energy transmission system (TETS) composed of a Class-E amplifier may operate at a state away from the optimum power transmission due to the load variation. By introducing the feedback-loop technique, the TETS can keep the optimum state with constant output voltage by adjusting the important design parameters, that is, the duty ratio and frequency of the driving signal and the supply voltage. The relations between these adjusted parameters and the load are investigated. The effectiveness of the feedback technique is validated through a design example with a variable load parameter. The experimental results show that the Class-E amplifier in the feedback loop can keep operating at the optimum state under the condition of up to 50 percent variation of the load value.

Adaptive control of DC motors with periodic disturbance using signal modulation approach (Lock in Amplifier 기법을 이용한 주기적 외란을 갖는 DC 전동기의 적응제어)

  • Jeong, Sang-Chul;Cho, Hyun-Cheol;Kim, Jun-Su;An, Young-Joo;Lee, Hyung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1771-1772
    • /
    • 2008
  • 전동기나 발전기와 같은 회전기기에 주로 발생하는 주기외란은 시스템 성능을 저하시키는 특성으로서 고급제어시스템 구현을 위하여 반드시 보상되어야 한다. 본 논문은 신호처리기법의 일종인 Lock In Amplifier(LIA) 알고리즘 기반 외란보상 제어기를 제안한다. 제안하는 제어규칙은 공칭제어기와 보조제어기로 구성되며 전자는 외란을 고려하지 않은 시스템 모델에 대하여 상태궤환 제어기법으로 산출되며 후자는 LIA 기법을 이용하여 외란특성을 실시간으로 추정하여 연산되어진다. 제안하는 제어시스템은 기존의 결정적 외란으로부터 발생되었던 실시간 제어오차를 월등히 개선하는 장점을 가지고 있다. 실시간 전동기 제어장치를 통해 제안하는 알고리즘의 성능의 우수성 및 타당성을 검증한다.

  • PDF

System Analysis and Power Amplifier Design for ILS Localizer (ILS 로컬라이저 시스템 분석 및 전력증폭기 설계)

  • Su kyung Kim;Kyung Heon Koo
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.116-122
    • /
    • 2024
  • In this paper, course structure and course width were studied among the main performances of the system to derive the required performance of the modulation index, output power, and phase change specifications of the instrument landing system (ILS) localizer power amplifier. To satisfy the course structure's deviation standard (± 5 uA), the difference in depth of modulation (DDM) deviation standard of the carrier with sideband (CSB) amplifier was standardized to ± 1 uA(0.001 DDM). CSB 30 W power amplifier was designed, and through the modulation compensation circuit, sum in depth of modulation (SDM) is 40% ± 0.1% and DDM is ± 0.0005 DDM in the operating output range(45 dBm ~ 35 dBm). In addition, the course width and displacement sensitivity specifications were analyzed through simulation, and the ± 0.1° change applied during comissioning inspection, which is the most stringent standard, was applied. The output variation of the suppressed with sideband only ( SBO) amplifier was ± 2 mW or less, The phase was standardized to within ± 3 ° and the characteristics were satisfied. By applying a compensation circuit according to output power and temperature, stable modulation index, output, and phase characteristics were obtained.

Fabrication of a Breathing Assist Device for Saxophone Players with Breathing Problems

  • Kato, Tomonori;Ashikari, Tadataka;Matoba, Chikara;Mawatari, Asashi;Thumwarin, Pitak
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.72-76
    • /
    • 2021
  • The aim of this study was to establish a breathing assist system for saxophone players with breathing problems. Although the saxophone is a popular wind instrument with a reed in its mouthpiece, it can be difficult for people with breathing problems to play this instrument, as it requires adequate breath support for deep and even long breaths. To solve this problem, the authors propose a breathing assist device, which functions like a pneumatic master-slave amplifier, for saxophone players with breathing problems. First, the proposed device is fabricated. Second, the effectiveness of the breathing assist device as a master-slave amplifier is confirmed through experiments. Third, the dynamic characteristics of the device are tested up to 10 Hz, and they demonstrate that the device responds well for up to approximately 5 Hz.

A Portable Impedance Spectroscopy Instrument for the Measurement of the Impedance Spectrum of High Voltage Battery Pack (고압 배터리 팩의 임피던스 스펙트럼 측정용 휴대용 임피던스 분광기)

  • Rahim, Gul;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • The battery's State of Health (SOH) is a critical parameter in the process of battery use, as it represents the Remaining Useful Life (RUL) of the battery. Electrochemical Impedance Spectroscopy (EIS) is a widely used technique in observing the state of the battery. The measured impedance at certain frequencies can be used to evaluate the state of the battery, as it is intimately tied to the underlying chemical reactions. In this work, a low-cost portable EIS instrument is developed on the basis of the ARM Cortex-M4 Microcontroller Unit (MCU) for measuring the impedance spectrum of Li-ion battery packs. The MCU uses a built-in DAC module to generate the sinusoidal sweep perturbation signal. Moreover, it performs the dual-channel acquisition of voltage and current signals, calculates impedance using a Digital Lock-in Amplifier (DLA), and transmits the result to a PC. By using LabVIEW, an interface was developed with the real-time display of the EIS information. The developed instrument was suitable for measuring the impedance spectrum of the battery pack up to 1000 V. The measurement frequency range of the instrument was from 1 hz to 1 Khz. Then, to prove the performance of the developed system, the impedance of a Samsung SM3 battery pack and a Bexel pouch module were measured and compared with those obtained by the commercial instrument.

Design of 0.5V Electro-cardiography (전원전압 0.5V에서 동작하는 심전도계)

  • Sung, Min-Hyuk;Kim, Jea-Duck;Choi, Seong-Yeol;Kim, Yeong-Seuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1303-1310
    • /
    • 2016
  • In this paper, electrocardiogram (ECG) analog front end with supply voltage of 0.5V has been designed and verified by measurements of fabricated chip. ECG is composed of instrument amplifier, 6th order gm-C low pass filter and variable gain amplifier. The instrument amplifier is designed to have gain of 34.8dB and the 6th order gm-C low pass filter is designed to obtain the cutoff frequency of 400Hz. The operational transconductance amplifier of the low pass filter utilizes body-driven differential input stage for low voltage operation. The variable gain amplifier is designed to have gain of 6.1~26.4dB. The electrocardiogram analog front end are fabricated in TSMC $0.18{\mu}m$ CMOS process with chip size of $858{\mu}m{\times}580{\mu}m$. Measurements of the fabricated chip is done not to saturate the gain of ECG by changing the external resistor and measured gain of 28.7dB and cutoff frequency of 0.5 - 630Hz are obtained using the supply voltage of 0.5V.

A New PMU (parametric measurement unit) Design with Differential Difference Amplifier (차동 차이 증폭기를 이용한 새로운 파라메터 측정기 (PMU) 설계)

  • An, Kyung-Chan;Kang, Hee-Jin;Park, Chang-Bum;Lim, Shin-Il
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.1
    • /
    • pp.61-70
    • /
    • 2016
  • This paper describes a new PMU(parametric measurement unit) design technique for automatic test equipment(ATE). Only one DDA(differential difference amplifier) is used to force the test signals to DUT(device under test), while conventional design uses two or more amplifiers to force test signals. Since the proposed technique does not need extra amplifiers in feedback path, the proposed PMU inherently guarantees stable operation. Moreover, to measure the response signals from DUT, proposed technique also adopted only one DDA amplifier as an IA(instrument amplifier), while conventional IA uses 3 amplifiers and several resistors. The DDA adopted two rail-to-rail differential input stages to handle full-range differential signals. Gain enhancement technique is used in folded-cascode type DDA to get open loop gain of 100 dB. Proposed PMU design enables accurate and stable operation with smaller hardware and lower power consumption. This PMU is implemented with 0.18 um CMOS process and supply voltage is 1.8 V. Input ranges for each force mode are 0.25~1.55 V at voltage force and 0.9~0.935 V at current force mode.