• 제목/요약/키워드: Instantaneous flow field

검색결과 136건 처리시간 0.025초

Numerical Simulation of the Effect of Finite Diaphragm Rupture Process on Micro Shock Tube Flows

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.309-317
    • /
    • 2012
  • Recent years have witnessed the use of micro shock tube in various engineering applications like micro combustion, micro propulsion, particle delivery systems etc. The flow characteristics occurring in the micro shock tube shows a considerable deviation from that of well established conventional macro shock tube due to very low Reynolds number and high Knudsen number effects. Also the diaphragm rupture process, which is considered to be instantaneous process in many of the conventional shock tubes, will be crucial for micro shock tubes in determining the near diaphragm flow field and shock formation. In the present study, an axi-symmetric CFD method has been applied to simulate the micro shock tube, with Maxwell's slip velocity and temperature jump boundary conditions. The effects of finite diaphragm rupture process on the flow field and the shock formation was investigated, in detail. The results show that the shock strength attenuates rapidly as it propagates through micro shock tubes.

  • PDF

식기세척기 내부 유동 분포 분석을 위한 유동가시화 기법 개발 (Development of Flow Visualization Technique for Analysis of Flow Distribution inside Dishwasher)

  • 김아란;함정윤;조진호;조위삼;고한서
    • 한국가시화정보학회지
    • /
    • 제11권2호
    • /
    • pp.12-17
    • /
    • 2013
  • A flow visualization technique was developed to analyze flow distribution inside a dishwasher in this study. Then, a new design plan was proposed to improve the efficiency of the dishwasher by the analyzed results and it was confirmed experimentally by the developed technique. Gas flow fields inside a drying duct of a tub for a drying process was investigated by a developed PIV (Particle Image Velocimetry) and a CFD (Computational Fluid Dynamics) method. Also, the flow visualization technique was developed for the liquid flow field of a rotor-arm system to propose the improved design idea. Also, interactions between liquid and gas were observed around the rotor-arm system. The two-phase flow was modified to the liquid flow field because laser sheets are refracted when pass through the two-phase flow. Thus, the flow visualization techniques was developed in this study to measure the instantaneous flow velocities in the liquid quantitatively.

Recovery of 3-D Motion from Time-Varying Image Flows

  • Wohn, Kwang-Yun;Jung, Soon-Ki
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권2호
    • /
    • pp.77-86
    • /
    • 1996
  • In this paper we deal with the problem of recovering 3-D motion and structure from a time-varying 2-D velocity vector field. A great deal has been done on this topic, most of which has concentrated on finding necessary and sufficient conditions for there to be a unique 3-D solution corresponding to a given 2-D motion. While previous work provides useful theoretical insight, in most situations the known algorithms have turned out to be too sensitive to be of much practical use. It appears that any robust algorithm must improve the 3-D solutions over time. As a step toward such algorithm, we present a method for recovering 3-D motion and structure from a given time-varying 2-D velocity vector field. The surface of the object in the scene is assumed to be locally planar. It is also assumed that 3-D velocity vectors are piecewise constant over three consecutive frames (or two snapshots of flow field). Our formulation relates 3-D motion and object geometry with the optical flow vector as well as its spatial and temporal derivatives. The linearization parameters, or equivalently, the first-order flow approximation (in space and time) is sufficient to recover rigid body motion and local surface structure from the local instantaneous flow field. We also demonstrate, through a sensitivity analysis carried out for synthetic and natural motions in space, that 3-D motion can be recovered reliably.

  • PDF

PIV를 이용한 선박 프로펠러 후류의 속도장 계측 (PIV Velocity Field Measurements of Flow around a Ship with Rotating Propeller)

  • 이상준;백부근
    • 대한조선학회논문집
    • /
    • 제40권5호
    • /
    • pp.17-25
    • /
    • 2003
  • Velocity field behind a container ship model with a rotating propeller has been investigated using PIV (particle image velocimetry) system. Four hundred instantaneous velocity fields were measured at 4 different blade phases and ensemble-averaged to investigate the spatial evolution of vortical structure of near wake within one propeller diameter downstream. The phase-averaged mean velocity fields show the potential wake and the viscous wake formed due to the boundary layers developed on the blade surfaces. The interaction between bilge vortex developed along the hull surface and the tangential velocity component of incoming flow causes to have asymmetric flow structure in the transverse plane.

난류 파이프 유동 내 물질전달에 대한 레이놀즈 수 영향: Part II. 순간농도장, 고차 난류통계치 및 물질전달수지 (REYNOLDS NUMBER EFFECTS ON MASS TRANSFER IN TURBULENT PIPE FLOW: PART II. INSTANTANEOUS CONCENTRATION FIELD, HIGHER-ORDER STATISTICS AND MASS TRANSFER BUDGETS)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.59-67
    • /
    • 2012
  • Large Eddy Simulation(LES) of turbulent mass transfer in fully developed turbulent pipe flow has been performed to study the effect of Reynolds number on the concentration fields at $Re_{\tau}=180$, 395, 590 based on friction velocity and pipe radius. Dynamic subgrid-scale models for the turbulent subgrid-scale stresses and mass fluxes were employed to close the governing equations. Fully developed turbulent pipe flows with constant mass flux imposed at the wall are studied for Sc=0.71. The mean concentration profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. The effects of Reynolds number on the turbulent mass transfer are identified in the higher-order statistics(Skewness and Flatness factor) and instantaneous concentration fields. The budgets of turbulent mass fluxes and concentration variance were computed and analyzed to elucidate the effect of Reynolds number on turbulent mass transfer. Furthermore, to understand the correlation between near-wall turbulence structure and concentration fluctuation, we present an octant analysis in the vicinity of the pipe wall.

비대칭분류의 노즐출구영역에서의 난류유동장 해석 (The Near Field Structure of Initially Asymmetic Jets)

  • 김경훈;신정관;이한영
    • 한국분무공학회지
    • /
    • 제4권4호
    • /
    • pp.38-45
    • /
    • 1999
  • The near field structure of round turbulent jets with initially asymmetric velocity distribution is investigated experimentally. Experiments were carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements were undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distribution of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stress. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend at the upstream of the exit. Three pipes were used for this study: A straight pipe, 90 and 160 degree-bended pipes. Therefore, at the upstream of the pipe exit, the secondary flow through the bend and the mean streamwise velocity distribution could be controlled by changing the curvature of pipes.

  • PDF

Micro-PIV Measurements of In Vitro Blood Flow in a Micro-Channel

  • Park, Cheol-Woo;Lee, Sang-Joon;Shin, Se-Hyun
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제1권2호
    • /
    • pp.30-35
    • /
    • 2003
  • Flow characteristics of blood flow in a micro channel were investigated experimentally using a micro-PIV (Particle Image Velocimetry) velocity field measurement technique. The main objective of this study was to understand the real blood flow in micron-sized blood vessels. The Reynolds number based on the hydraulic diameter of micro-channel for deionized (DI) water was about Re=0.34. For each experimental condition, 100 instantaneous velocity fields were captured and ensemble-averaged to get the spatial distributions of mean velocity. In addition, the motion of RBC (Red Blood Cell) was visualized with a high-speed CCD camera. The captured flow images of nano-scale fluorescent tracer particles in DI water were clear and gave good velocity tracking-ability. However, there were substantial velocity variations in the central region of real blood flow in a micro-channel due to the presence of red blood cells.

  • PDF

평면 제트류 응집구조의 근사적 표현에 관한 연구 (Approximation for the coherent structures in the planar jet flow)

  • 이찬희;이상환
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.751-762
    • /
    • 1995
  • The snapshot method is introduced to approximate the coherent structures of planar jet flow. The numerical simulation of instantaneous flow field is analyzed by SIMPLE algorithm. An ensemble of realizations is collected using a sampling condition that corresponds to the passage of a large scale vortex at positions 4 and 6 diameters downstream from the nozzle. With snapshot mothod we could treat the data efficiently and approximate coherent structures inhered in the planar jet flow successfully 94% of total turbulent kinetic energy with 10 terms of Karhunen-Loeve expansions. Finally, In accordance with the recent trend to try to explain and model turbulence phenomena with the existence of coherent structures, in the present study, we express the underlying coherent structures of planar jet flow in the minimum number of modes by calculating Karhunen-Loeve expansions in order to improve to understanding of jet flow and to make the information storage and management in computers easier.

3차원 유동장 측정용 홀로그래피 간섭토모그래피 (Holographic interferometric tomography for reconstructing a three- dimensional flow field)

  • 차동진
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.749-757
    • /
    • 1999
  • Holographic interferornetric tomography can provide reconstruction of instantaneous three dimensional gross flow fields. The technique however confronts ill-posed reconstruction problems in practical applications. Experimental data are usually limited in projection and angular scanning when a field is captured instantaneously or under the obstruction of test models and test section enclosures. An algorithm, based on a series expansion method, has been developed to improve the reconstruction under the ill-posed conditions. A three-dimensional natural convection flow around two interacting isothermal cubes is experimentally investigated. The flow can provide a challenging reconstruction problem and lend itself to accurate numerical solution for comparison. The refractive index fields at two horizontal sections of the thermal plume with and without an opaque object are reconstructed at a limited view angle of 80" The experimental reconstructions are then compared with those from numerical calculation and thermocouple thermometry. It confirms that the technique is applicable to reconstruction of reasonably complex, three-dimensional flow fields.elds.

  • PDF

디지털영상처리기술을 이용한 비접촉식 유체-구조물 연동운동 3차원 측정시스템 개발에 관한 연구 (A Study on the Development of a Three-dimensional Measurement System for Flow-Structure Interaction Using Digital Image Processing)

  • 도덕희;조효제;상지웅;황태규;조용범;편용범
    • 한국해양공학회지
    • /
    • 제18권4호
    • /
    • pp.1-7
    • /
    • 2004
  • A simultaneous measurement system that can analyze the flow-structure interaction has been developed. This system consists of four CCD cameras, two for capturing instantaneous flow fields and two for tracking a solid body. The three-dimensional vector fields around a cylinder are measured, while the motion of the cylinder forced by the flow field is measured, simultaneously, with the constructed system. The cylinder is suspended in the working fluid of a water channel, and the surface of the working fluid is forced sinusoidally to make the cylinder bounced. Reynolds number for the mean main stream is about 3500. The interaction between the flow fields and the cylinder motion is examined quantitatively.