• Title/Summary/Keyword: Instantaneous Frequency/Amplitude

Search Result 55, Processing Time 0.026 seconds

Confidence bevels of Measured Axle Load with a Consideration of Dynamic Loading (동적 부하를 고려한 계측 축중의 신뢰 범위)

  • 조일수;김성욱;이주형;박종연;이동훈;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.303-303
    • /
    • 2000
  • It is difficult to determine the static axle weight of a vehicle with weigh-in-motion systems which in absence measure instantaneous axle impact forces. The difficulty in determining a static axle weight results from dynamic effects induced by vehicle/road interactions. One method to improve the problem is to quantify a statistical confidence level for measured axle weight. The quarter-car model is used to simulate vehicle motion, Also, the road input to vehicle model can be characterized in statistical terms by PSD (power spectral density) of appropriate amplitude and frequency contents other than an exact spatial distribution. The confidence levels for the measured axle weight can be obtained by the random process analysis using both vehicle model and road input.

  • PDF

Detection and Classification of Extracellular Action Potential Using Energy Operator and Artificial Neural Network (에너지연산자와 신경회로망을 이용한 세포외신경신호외 검출 및 분류)

  • Kim, Kyung-Hwan;Kim, Sung-June
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.207-208
    • /
    • 1998
  • Classification of extracellularly recorded action potential into each unit is an important procedure for further analysis of spike trains as point process. We utilize feedforward neural network structures, multilayer perceptron and radial basis function network to implement spike classifier. For the efficient training of classifiers, nonlinear energy operator that can trace the instantaneous frequency as well as the amplitude of the input signal is used. Trained classifiers shows successful operation, up to 90% correct classification was possible under 1.2 of signal-to-noise ratio.

  • PDF

Compensation of the Rotor Time Constant using Fuzzy Controller in Induction Motor Vector Control (유도전동기 벡터제어에서 퍼지제어기에 의한 시정수 보상)

  • Cha Duck-Gun;Park Jae-Sung;Park Gun-Tae
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.21-24
    • /
    • 2002
  • The vector control system of an induction motor is the high performance drive system to achieve the instantaneous torque control. The vector control system is greatly divided into the direct control, and the indirect control that the most widely is used, The indirect vector control needs the rotor time constant, which changes widely according to the temperature, frequency, and current amplitude. The incorrect time constant leads to the saturation of magnetic flux or under-excitation phenomena. As a result, that deteriorate the control performance. Therefore, in this paper, the effect of time constant variation is investigated and its on-line tuning algorithm is proposed. The time constant using the torque angles was calculated and that of the validity of algorithm proposed was proved through the computer simulation and the experiment.

  • PDF

Damage progression study in fibre reinforced concrete using acoustic emission technique

  • Banjara, Nawal Kishor;Sasmal, Saptarshi;Srinivas, V.
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.173-184
    • /
    • 2019
  • The main objective of this study is to evaluate the true fracture energy and monitor the damage progression in steel fibre reinforced concrete (SFRC) specimens using acoustic emission (AE) features. Four point bending test is carried out using pre-notched plain and fibre reinforced (0.5% and 1% volume fraction) - concrete under monotonic loading. AE sensors are affixed at different locations of the specimens and AE parameters such as rise time, AE energy, hits, counts, amplitude and duration etc. are obtained. Using the captured and processed AE event data, fracture process zone is identified and the true fracture energy is evaluated. The AE data is also employed for tracing the damage progression in plain and fibre reinforced concrete, using both parametric- and signal- based techniques. Hilbert - Huang transform (HHT) is used in signal based processing for evaluating instantaneous frequency of the acoustic events. It is found that the appropriately processed and carefully analyzed acoustic data is capable of providing vital information on progression of damage on different types of concrete.

Amplitude and phase analysis of the brain Evoked Potential about performing a task related to visual stimulus using Empirical mode decomposition (경험적 모드 분해를 이용한 시각자극 관련 과제수행에 대한 뇌 유발전위 진폭과 위상 변화 분석)

  • Lee, ByuckJin;Yoo, Sun-Kook
    • Science of Emotion and Sensibility
    • /
    • v.18 no.1
    • /
    • pp.15-26
    • /
    • 2015
  • In this paper, amplitude and phase difference patterns for theta and alpha bands of the Evoked Potential(EP) in relation to perform a task at visual stimulus were analyzed using the Empirical mode decomposition(EMD). The EMD is applied to decompose EP signals with task-related sub-frequency band signals. Intrinsic mode function was implied in Hilbert transform and instantaneous amplitude and phase differences of theta and alpha were derived from Hilbert transformed EP. In a task status, large amplitude for both bands was observed at P2, N2, and P3 points as well as maximum phase difference was observed at N1 and P2. We confirmed that both bands are associated with a task at visual stimulus, and less associated with fixation. The proposed method enhances the time and frequency resolution in comparison with band-pass filter method which observed different phase results according to conditions.

On Adaptive LDPC Coded MIMO-OFDM with MQAM on Fading Channels (페이딩 채널에서 적응 LDPC 부호화 MIMO-OFDM의 성능 분석)

  • Kim, Jin-Woo;Joh, Kyung-Hyun;Ra, Keuk-Hwan
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.80-86
    • /
    • 2006
  • The wireless communication based on LDPC and adaptive spatial-subcarrier coded modulation using MQAM for orthogonal frequency division multiplexing (OFDM) wireless transmission by using instantaneous channel state information and employing multiple antennas at both the transmitter and the receiver. Adaptive coded modulation is a promising idea for bandwidth-efficient transmission on time-varying, narrowband wireless channels. On power limited Additive White Gaussian Noise (AWGN) channels, low density parity check (LDPC) codes are a class of error control codes which have demonstrated impressive error correcting qualities, under some conditions performing even better than turbo codes. The paper demonstrates OFDM with LDPC and adaptive modulation applied to Multiple-Input Multiple-Output (MIMO) system. An optimization algorithm to obtain a bit and power allocation for each subcarrier assuming instantaneous channel knowledge is used. The experimental results are shown the potential of our proposed system.

Numerical simulation of the flow behind a circular cylinder with a rotary oscillation (주기적으로 회전하는 원봉 주위의 후류에 관한 수치적 연구)

  • Baek, Seung-Jin;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.267-279
    • /
    • 1998
  • A numerical study was made of flow behind a circular cylinder in a uniform flow, where the cylinder was rotationally oscillated in time. The temporal behavior of vortex formation was scrutinized over broad ranges of the two externally specified parameters, i.e., the dimensionless rotary oscillating frequency (.110.leq. $S_{f}$.leq..220) and the maximum angular amplitude of rotation (.theta.$_{max}$=15 deg., 30 deg. and 60 deg.). The Reynolds number (Re= $U_{{\inf}D}$.nu.) was fixed at Re=110. A fractional-step method was utilized to solve the Navier-Stokes equations with a generalized coordinate system. The main emphasis was placed on the initial vortex formations by varying $S_{f}$ and .theta.$_{max}$. Instantaneous streamlines and pressure distributions were displayed to show the vortex formation patterns. The vortex formation modes and relevant phase changes were characterized by measuring the lift coefficient ( $C_{L}$) and the time of negative maximum $C_{L}$( $t_{-C}$$_{Lmax}$) with variable forcing conditions.s.tions.s.s.s.

Performance Analysis of Adaptive System Model using MPSK and MQAM for Frequency Nonselective Channel (주파수 비선택성 채널에서 MPSK와 MQAM을 이용한 적응적 시스템 모델의 성능 해석)

  • Jae-Kyoung Moon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.4
    • /
    • pp.332-341
    • /
    • 1997
  • In this paper, we propose an adaptive trellis-coded Multipe Quadrature Amplitude Modulation (ATCMQAM) for slowly varying Rayleigh fading channels. The proposed system adaptively controls the coding rate combined with modulation level of pargmatic approach to trellis-coded modulation according to the instantaneous fading channel conditions, and employs MQAM as modulation scheme. Results by computer simulation show that the proposed adaptive model using MQAM can realize higher quality transmission with the improvement more than 0.5~1 bit in average bit rate, and there is a coding gain of 2~5 dB, depending on the high SNR value, compared with the conventional adaptive model employing MPSK.

  • PDF

Effect of bidirectional internal flow on fluid.structure interaction dynamics of conveying marine riser model subject to shear current

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.57-70
    • /
    • 2012
  • This article presents a numerical investigation concerning the effect of two kinds of axially progressing internal flows (namely, upward and downward) on fluid.structure interaction (FSI) dynamics about a marine riser model which is subject to external shear current. The CAE technology behind the current research is a proposed FSI solution, which combines structural analysis software with CFD technology together. Efficiency validation for the CFD software was carried out first. It has been proved that the result from numerical simulations agrees well with the observation from relating model test cases in which the fluidity of internal flow is ignorable. After verifying the numerical code accuracy, simulations are conducted to study the vibration response that attributes to the internal progressive flow. It is found that the existence of internal flow does play an important role in determining the vibration mode (/dominant frequency) and the magnitude of instantaneous vibration amplitude. Since asymmetric curvature along the riser span emerges in the case of external shear current, the centrifugal and Coriolis accelerations owing to up- and downward internal progressive flows play different roles in determining the fluid.structure interaction response. The discrepancy between them becomes distinct, when the velocity ratio of internal flow against external shear current is relatively high.

Performance of water-jet pump under acceleration

  • Wu, Xian-Fang;Li, Ming-Hui;Liu, Hou-Lin;Tan, Ming-Gao;Lu, You-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.794-803
    • /
    • 2021
  • The instantaneous acceleration affects the performance of the water-jet pump obviously. Here, based on the user-defined function, the method to simulate the inner flow in water-jet pumps under acceleration conditions was established. The effects of two different acceleration modes (linear acceleration and exponential acceleration) and three kinds of different acceleration time (0.5s, 1s and 2s) on the performance of the water-jet pump were analyzed. The results show that the thrust and the pressure pulsation under exponential acceleration are lower than that under linear acceleration at the same time; the vapor volume fraction in the impeller under linear acceleration is 27.3% higher than that under exponential acceleration. As the acceleration time increases, the thrust gradually increases and the pressure pulsation amplitude at the impeller inlet and outlet gradually decreases, while the law of pressure pulsation is the opposite at the diffuser outlet. The main frequency of pressure pulsation at the impeller outlet is different under different acceleration time. The research results can provide some reference for the optimal design of water-jet pumps.