• Title/Summary/Keyword: Instantaneous Amplitude

Search Result 95, Processing Time 0.022 seconds

Depositional Facies Analysis from Seismic Attributes: Implication of Reservoir Characterization

  • Park Yong-Joon
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.2-16
    • /
    • 1999
  • This study includes structural analysis of the northern Pattani Basin, areal description of depositional facies, and their spatial relationships using 3-D seismic and well data. Well log data indicate that the representative depositional facies of the studied intervals are sandy, fluvial, channel-fill facies encased in shaly floodplain deposits. Seismic responses were predicted from a synthetic seismogram using a model of dominant depositional facies. Peak-to-trough amplitude and instantaneous frequency seismic attributes are used in depositional facies interpretation. Three Intervals A, B and C are interpreted on the successive stratal surfaces. The shallowest interval, A, is the Quaternary transgressive succession. Each stratal surface showed flow pattern variation of fluvial channel facies. Two transgressive cycles were identified in interval A. Interval B also indicated fluvial facies. Depositional facies architectures are described by interpreting seismic attributes on the successive stratal surfaces.

  • PDF

Hybridal Analysis of High-Frequency Combustion Instability with Pressure-Coupled Combustion Response Model (압력섭동과 연관된 연소응답모델에 기초한 고주파 연소불안정의 이론-수치적 고찰)

  • 윤웅섭;이길용
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.253-257
    • /
    • 2003
  • Theoretical-numerical analysis of wave instability is conducted with parametric response function model. Fluctuating instantaneous mass evaporation rate functionally coupled with pressure perturbations with phase lag is assumed to examine the validity of the method. With sufficiently large amplitude and less phase lag to perturbation, combustion response is resonant to pressure waves, unstable waves are amplified, and the system is driven to instability. Magnitude of response is a crucial instability parameter in the determination of a stability margins and makes a critical change of balancing conditions between the amplifying and damping acoustic energies. In the phase regime the unstable waves are amplified, whereas, the acoustic waves are attenuated in the out-of-phase regime. In the intermediate regime, no distinct tendency of unstable waves was determined.

  • PDF

A Comparison of Control Algorithms for a Doubly Fed Induction Generator in Medium-voltage Wind Power System under Unbalanced Conditions

  • Go, Yu-Ran;Park, Hyeon-Cheol;Zhu, Yaqiong;Suh, Yong-Sug
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.194-195
    • /
    • 2010
  • This paper investigates control algorithms for a doubly fed induction generator (DFIG) with back-to-back converter in medium-voltage wind power system under unbalanced grid conditions. Operation of DFIG under unbalanced grid conditions causes several problems such as overcurrent, unbalanced currents, active power pulsation and torque pulsation. Three different control algorithms to compensate for the unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, efficiency, harmonic distortions and torque pulsation. The control algorithm having zero amplitude of negative sequence current shows the most cost-effective performance concerning fault ride-through capability and efficiency. The control algorithm for nullifying the oscillating component of the instantaneous active power generates least harmonic distortions. Combination of these two control algorithms depending on the operating requirements presents most optimized performance factors under the generalized unbalanced operating conditions.

  • PDF

Confidence bevels of Measured Axle Load with a Consideration of Dynamic Loading (동적 부하를 고려한 계측 축중의 신뢰 범위)

  • 조일수;김성욱;이주형;박종연;이동훈;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.303-303
    • /
    • 2000
  • It is difficult to determine the static axle weight of a vehicle with weigh-in-motion systems which in absence measure instantaneous axle impact forces. The difficulty in determining a static axle weight results from dynamic effects induced by vehicle/road interactions. One method to improve the problem is to quantify a statistical confidence level for measured axle weight. The quarter-car model is used to simulate vehicle motion, Also, the road input to vehicle model can be characterized in statistical terms by PSD (power spectral density) of appropriate amplitude and frequency contents other than an exact spatial distribution. The confidence levels for the measured axle weight can be obtained by the random process analysis using both vehicle model and road input.

  • PDF

Detection and Classification of Extracellular Action Potential Using Energy Operator and Artificial Neural Network (에너지연산자와 신경회로망을 이용한 세포외신경신호외 검출 및 분류)

  • Kim, Kyung-Hwan;Kim, Sung-June
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.207-208
    • /
    • 1998
  • Classification of extracellularly recorded action potential into each unit is an important procedure for further analysis of spike trains as point process. We utilize feedforward neural network structures, multilayer perceptron and radial basis function network to implement spike classifier. For the efficient training of classifiers, nonlinear energy operator that can trace the instantaneous frequency as well as the amplitude of the input signal is used. Trained classifiers shows successful operation, up to 90% correct classification was possible under 1.2 of signal-to-noise ratio.

  • PDF

A Study on The Rotor Position Detection of Bifilar-Wound Hybrid Stepping Motors (복권형 하이브리드 스테핑 전동기의 회전자 위치 검출에 대한 연구)

  • Yu, K.N.;You, J.-Bong;Woo, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.187-191
    • /
    • 1997
  • In this paper, we show that the rotor position of the bifilar-wound hybrid stepping motors for the closed-loop drives is detected by the phase current measurement. We propose an instantaneous phase current equation, which is the function of electrical angle, by the modeling of the stepping motor including motor driving circuits. We also analyze the relationship between phase current and rotor position from the computer simulation results. It is shown that the information about the rotor position is obtained from the phase current amplitude and its derivatives at the instance of ${\pi}/2$ electrical angle of excitation voltage.

  • PDF

Constructing the mode shapes of a bridge from a passing vehicle: a theoretical study

  • Yang, Y.B.;Li, Y.C.;Chang, K.C.
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.797-819
    • /
    • 2014
  • This paper presents a theoretical algorithm for constructing the mode shapes of a bridge from the dynamic responses of a test vehicle moving over the bridge. In comparison with those approaches that utilize a limited number of sensors deployed on the bridge, the present approach can offer much more spatial information, as well as higher resolution in mode shapes, since the test vehicle can receive the vibration characteristics of each point during its passage on the bridge. Basically only one or few sensors are required to be installed on the test vehicle. Factors that affect the accuracy of the present approach for constructing the bridge mode shapes are studied, including the vehicle speed, random traffic, and road surface roughness. Through numerical simulations, the present approach is verified to be feasible under the condition of constant and low vehicle speeds.

Compensation of the Rotor Time Constant using Fuzzy Controller in Induction Motor Vector Control (유도전동기 벡터제어에서 퍼지제어기에 의한 시정수 보상)

  • Cha Duck-Gun;Park Jae-Sung;Park Gun-Tae
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.21-24
    • /
    • 2002
  • The vector control system of an induction motor is the high performance drive system to achieve the instantaneous torque control. The vector control system is greatly divided into the direct control, and the indirect control that the most widely is used, The indirect vector control needs the rotor time constant, which changes widely according to the temperature, frequency, and current amplitude. The incorrect time constant leads to the saturation of magnetic flux or under-excitation phenomena. As a result, that deteriorate the control performance. Therefore, in this paper, the effect of time constant variation is investigated and its on-line tuning algorithm is proposed. The time constant using the torque angles was calculated and that of the validity of algorithm proposed was proved through the computer simulation and the experiment.

  • PDF

A Study on PWM Pattern for Driving Induction Motor using ${\mu}$-Processor and One Chip (범용 ${\mu}$-Processor와 One Chip으로 구현되는 유도전동기 구동 PWM Pattern에 관한 연구)

  • Hwang, Y.M.;Hoe, T.W.;Park, J.H.;Shin, D.R.;Cho, Y.G.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.179-181
    • /
    • 1998
  • In this paper, one chip PWM pattern generator which eliminates time delay of computations and improves utilization factor of voltage is proposed. Both amplitude of sinusoidal signal and triangular signal are directly controlled. Thus, time delay of computations can be eliminated, and it is possible to track accurately instantaneous current for a sudden change of load with microprocessor 80C196KC. In addition, setting dead-time is also possible for wide range. From experimental work with inverter system for driving induction motor, the validity of proposed one chip PWM pattern generator is verified.

  • PDF

Damage progression study in fibre reinforced concrete using acoustic emission technique

  • Banjara, Nawal Kishor;Sasmal, Saptarshi;Srinivas, V.
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.173-184
    • /
    • 2019
  • The main objective of this study is to evaluate the true fracture energy and monitor the damage progression in steel fibre reinforced concrete (SFRC) specimens using acoustic emission (AE) features. Four point bending test is carried out using pre-notched plain and fibre reinforced (0.5% and 1% volume fraction) - concrete under monotonic loading. AE sensors are affixed at different locations of the specimens and AE parameters such as rise time, AE energy, hits, counts, amplitude and duration etc. are obtained. Using the captured and processed AE event data, fracture process zone is identified and the true fracture energy is evaluated. The AE data is also employed for tracing the damage progression in plain and fibre reinforced concrete, using both parametric- and signal- based techniques. Hilbert - Huang transform (HHT) is used in signal based processing for evaluating instantaneous frequency of the acoustic events. It is found that the appropriately processed and carefully analyzed acoustic data is capable of providing vital information on progression of damage on different types of concrete.