• Title/Summary/Keyword: Instant space

Search Result 58, Processing Time 0.026 seconds

Mobile Performance Evaluation of Mecanum Wheeled Omni-directional Mobile Robot (메카넘휠 기반의 전방향 이동로봇 주행성능 평가)

  • Chu, Baeksuk;Sung, Young Whee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.374-379
    • /
    • 2014
  • Mobile robots with omni-directional wheels can generate instant omni-directional motion without requiring extra space to change the direction of the body. Therefore, they are capable of moving in an arbitrary direction under any orientation even in narrow aisles or tight areas. In this research, an omni-directional mobile robot based on Mecanum wheels was developed to achieve omni-directionality. A CompactRIO embedded real-time controller and C series motion and I/O modules were employed in the control system design. Ultrasonic sensors installed on the front and lateral sides were utilized to measure the distance between the mobile robot and the side wall of a workspace. Through intensive experiments, a performance evaluation of the mobile robot was conducted to confirm its feasibility for industrial purposes. Mobility, omni-directionality, climbing capacity, and tracking performance of a squared trajectory were selected as performance indices to assess the omni-directional mobile robot.

Flow Characteristics of Rectangular Space with Asymmetric Inlet and Outlet (비대칭 입출구를 갖는 장방형공간의 유동특성)

  • Lee, Cheol-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.261-266
    • /
    • 2006
  • In this study, a scaled model chamber was built to investigate ventilation characteristics of the hood room in LNG carrier. Experimental study was performed in model by visualization equipment with laser apparatus. Four different kinds of measuring area were selected as experimental condition Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system and its software adopting two-frame grey-level cross correlation algorithm. The flow pattern reveals the large scale counter-clockwise forced-vortex rotation at center area.

  • PDF

Schedule Optimization in Resource Leveling through Open BIM Based Computer Simulations

  • Kim, Hyun-Joo
    • Journal of KIBIM
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • In this research, schedule optimization is defined as balancing the number of workers while keeping the demand and needs of the project resources, creating the perfect schedule for each activity. Therefore, when one optimizes a schedule, multiple potentials of schedule changes are assessed to get an instant view of changes that avoid any over and under staffing while maximizing productivity levels for the available labor cost. Optimizing the number of workers in the scheduling process is not a simple task since it usually involves many different factors to be considered such as the development of quantity take-offs, cost estimating, scheduling, direct/indirect costs, and borrowing costs in cash flow while each factor affecting the others simultaneously. That is why the optimization process usually requires complex computational simulations/modeling. This research attempts to find an optimal selection of daily maximum workers in a project while considering the impacts of other factors at the same time through OPEN BIM based multiple computer simulations in resource leveling. This paper integrates several different processes such as quantity take-offs, cost estimating, and scheduling processes through computer aided simulations and prediction in generating/comparing different outcomes of each process. To achieve interoperability among different simulation processes, this research utilized data exchanges supported by building SMART-IFC effort in automating the data extraction and retrieval. Numerous computer simulations were run, which included necessary aspects of construction scheduling, to produce sufficient alternatives for a given project.

A New Approach Towards Aggregation in VANET

  • Hussain, Rasheed;Abbas, Fizza;Son, Junggab;Kim, Sangjin;Oh, Heekuck
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.214-217
    • /
    • 2013
  • Advancements in automobile industries and the communication technologies caused VANET (Vehicular Ad Hoc NETwork) to evolve to VANET-based clouds before its deployment. It is more likely that VANET clouds will replace the traditional VANET in the deployment phase. It is to be noted that an abrupt deployment is out of question because it would require mass of resources and money to do so; instead incremental deployment is more ideal. In this paper, we aim at the incremental deployment phase of VANET clouds and focus on the well-established public transport networks. Data aggregation is one of the essential aspects in traditional VANET and has been researched for quite long time. However the previously proposed schemes are still controversial. Keeping in mind the time and space prediction of public buses, we leverage these buses as potential aggregators and MG (Mobile Gateways) in VANET clouds. Buses gather cooperative whereabouts information from neighbors, aggregate that information, disseminate it to the neighbor MGs and also send it to the cloud for storage and for services exchange. In our proposed scheme, we believe that the dissemination will be effective and cover most of the urban area since at any instant of time; buses cover most part of the urban areas. Besides, the effective transmission range is higher due to tall buses.

Confirmatory Study on Telecommuters TechnoStress Model Under COVID-19 (COVID-19 상황에서 나타나는 재택근무자 테크노스트레스 모델에 관한 연구)

  • Kim, Suhyeong;Lee, Jungwoo
    • Journal of Information Technology Services
    • /
    • v.20 no.5
    • /
    • pp.55-71
    • /
    • 2021
  • Technostress management is increasingly getting important as ICT advances and infiltrates every job and task. Especially with the advent of COVID-19, workers had to switch to teleworking utilizing ICT extensively. In this study, we developed a research model explaining antecedents and their impacts on technostress in telecommuting context, especially under the COVID-19 situation. The result revealed that techno-complexity, techno-invasion, and techno-overload are the dominant factors that affect the negative psychological responses in the COVID-19 situation. Among them, we found that techno-overload maintain the most significant influence. It is due to the lack of instant feedback on workload allocations in telework and the lack of adjustment period with the sudden shift to telecommuting. In the case of techno-complexity, employees seem to experience difficulty acquiring new technical skills. Finally, the techno-invasion came out significant, signifying the infiltration of working space by home-related activities. The emotion-focused coping strategy had a moderating effect. In contrast, the problem-focused coping strategy had no significant effect, indicating that an appropriate emotional coping strategy is more important for workers undergoing extreme changes in the work environment. Subsequently, practical and theoretical implications, limitations, and future research directions are discussed.

A Study on the Multiplicity of Architectural Skin in Contemporary Architecture (현대건축의 표피에서 나타나는 다질성의 특성 연구)

  • Kim, Do-Woon;Kim, Dong-Jin
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.6
    • /
    • pp.22-32
    • /
    • 2014
  • Development of digital technology, which is individualizing and differentiating the world, makes time and space facilitate multi-layering in the contemporary society. It gives a large influence on the contemporary architecture that inducing the visual and spatial experience. Also, It generates new images through the skin of architecture, which implies the contingent and fluid characteristics. These phenomenon show that various parameters are working on the architectural skin simultaneously. Such complexity make the structure of open space and diversity that are homogenized and synchronized. Like this, the architectural skin implies 'multiplicity': qualitative difference which is enable to change and create new images. This characteristic generates instant images changing variously and semantics constantly by the function of skin as a filter. Also, the architectural skin integrates or relocates of relationships between the various information and elements appearing in contemporary society in order to escape the customary relationship between internal and external. Furthermore, the inside and outside of the mixture as a collection of sense has been recognized as one image. This image of mixture consists of one unified continuous integration and extend the meaning of a fluid interface not just surface of the building. The skin of the contemporary architecture is very technical, so its meaning and role is expanded as a complex that exchange interaction. This means that the skin itself has functional elements of the integrated multiple skin to assist. Also it can form a multi-layered relationship and act as a wide range of interfaces depending on the perception of the observer. Therefore the multiplicity of the architectural skin indicates the importance as a boundary that generate images of new life through the sensory perception and implicit force. And it shows potential as the intermediary to try to communicate.

Orbit Determination from Tracking Data of Artificial Satellite Using the Method of Differential Correction (인공위성 추적자료의 미분보정에 의한 궤도결정)

  • 이병선;조중현;박상영;최규홍;김천휘
    • Journal of Astronomy and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.31-43
    • /
    • 1988
  • The differential correction process determining osculating orbital elements as correct as possible at a given instant of time from tracking data of artificial satellite was accomplished. Preliminary orbital elements were used as an initial value of the differential correction procedure and iterated until the residual of real observation (O) and computed observation(C) was minimized. Tracking satellite was NOAA-9 or TIROS-N series. Two types of tracking data were prediction data precomputed from mean orbital elements of TBUS and real data obtained from tracking 1.70 GHz HRPT signal of NOAA-9 using 5 meter auto-track antenna in Radio Research Laboratory. Accrding to thacking data either Gause method or Herrick-Gibbs method was applied to preliminary orbit determination. In the differential correction stage we used both of the Escobal(1975)'s analytical method and numerical method using f, g series for the comparision. The results between analytical and numerical ones are nearly consistent. And the differentially corrected orbit converged to the same value in spite of the differences between preliminary orbits of each time span.

  • PDF

Simultaneous Measurement of Strain and Damage Signal in Composite Structures Using a Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 변형률 및 파손신호 동시 측정)

  • Koh, Jong-In;Bang, Hyung-Joon;Kim, Chun-Gon;Hong, Chang-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.43-50
    • /
    • 2004
  • For the simultaneous measurement of strain and damage signal a fiber Bragg grating sensor system with a dual demodulator was proposed. The dual demodulator is composed of a demodulator using a tunable Fabry-Perot filter measuring the low-frequency signal with large magnitude such as strain and the other using a passive Mach-Zehnder interferometer detecting the high-frequency signal with small amplitude such as impact or damage signal. Using the proposed fiber Bragg grating sensor system, both the strain and damage signals of a cross-ply laminated composite beam under tensile loading were simultaneously measured. The strain and damage signals detected by single fiber Bragg grating sensor showed that sudden strain shifts were accompanied with vibration at a maximum frequency of several hundreds of kilohertz at the instant of matrix crack propagation in the 90 degree layer in composite beam.

Analysis of Solar and Lunar Motions in the Seonmyeong Calendar

  • Lee, Ki-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.87-96
    • /
    • 2019
  • We investigate solar and lunar motions in the Seonmyeong (SM) calendar that was compiled by Xu, Ang of the Tang dynasty (A.D. 618-907) in China and used for 71 years from 822 to 892. This calendar was also used in Korea during the Goryeo dynasty (A.D. 918-1392) and in Japan for 823 years from 862 to 1684, the longest time among the three countries. Referring to historical documents of China, Korea, and Japan, we analyze the calendrical methods of calculating the daily apparent movements of the Sun and Moon in the SM calendar, which were considered their unequal motions, and compare the movements with the results of modern calculations for three periods in the Goryeo dynasty: 919, 1155, and 1392 years (i.e., the beginning, middle, and ending of the dynasty, respectively). We find that a quadratic equation was employed to obtain the daily movement of the Sun using physical quantities on the instant of each solar term, which was tabulated in its calendar book such as the Goryeosa (History of the Goryeo Dynasty). For quantitative analysis, we compute the mean absolute difference (MAD) of the daily apparent movement between the SM calendar and modern calculations and obtain 0.33, 0.30, and 0.31 arcmin for the periods of 919, 1155, and 1392 years, respectively. Meanwhile, we find relatively large MAD values in the daily movement of the Moon: 0.217, 0.284, and 0.240 degrees for each corresponding year. An interesting point is that the MAD value in the lunar motion shows the maximum in 1155 years, and is the minimum in the solar motion. In conclusion, we believe that this study will facilitate in the understanding of the SM calendar further, particularly in the calendrical methods of calculating sunrise, sunset, and eclipse times.

Analysis on the Current Virtual Workplace Design Trends, and a Proposal for the Design Directions of the Future Virtual Workplace - Based on 12 Current Virtual Workplace Platforms - (가상 업무 공간의 디자인 현황 분석 및 향후 디자인 방법에 관한 제언 - 12개의 현행 사례의 비교분석을 중심으로 -)

  • Cho, Kyung hyun;Eum, Yu jeung;Choi, Hyeok jin;Lee, Seung Hyun;Cha, Seung Hyun
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.80-92
    • /
    • 2022
  • Recently, remote work has arisen due to the social atmosphere and advancement of digital technology. Although effective in premeditated communications such as conferences or meetings, the current technology such as messengers and video chats insufficiently supports impromptu communications like a chance encounter, daily conversation with colleagues, or brief instant meetings. This causes various problems such as a decrease in social belonging and an increase in social isolation. The virtual workplace, which emerged as an alternative to this technology, is merely replicating the workplace layouts in reality with an absence of the proper design guideline. Therefore, this paper aims to establish the foundation for the better design of the virtual workplace for remote-work employees. The research compared 12 current workplace cases with the analysis with 5 categories(Spatial Composition, Scale, Individual & Collaboration Workplace, Socializing Space), and discovered the following results: 1) some design principles of the real workplace can be applied on the virtual workplace design, 2) the architectural components of the virtual workplace can differ from them of the real. Based on the results, the research suggests both the appropriate design methodologies of the virtual workplace considering the design principles of the real office layouts, and the design direction for the future of the virtual workplace. This research will be the foundation for the future design of the virtual workplace.