• Title/Summary/Keyword: Instability Wave

Search Result 254, Processing Time 0.03 seconds

Numerical Simulation of Edgetone Phenomenon in Flow of a Jet-edge System Using Lattice Boltzmann Model

  • Kang, Ho-Keun
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • An edgetone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, 2-dimensional edgetone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle is presented using lattice Boltmznan model with 21 bits, which is introduced a flexible specific heat ratio y to simulate diatomic gases like air. The blown jet is given a parabolic inflow profile for the velocity, and the edges consist of wedges with angle 20 degree (for symmetric wedge) and 23 degree (for inclined wedge), respectively. At a stand-off distance w, the edge is inserted along the centerline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downward. Present results presented have shown in capturing small pressure fluctuating resulting from periodic oscillation of the jet around the edge. The pressure fluctuations propagate with the speed of sound. Their interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips. It is found that, as the numerical example, satisfactory simulation results on the edgetone can be obtained for the complex flow-edge interaction mechanism, demonstrating the capability of the lattice Boltzmann model with flexible specific heat ratio to predict flow-induced noises in the ventilating systems of ship.

Numerical Study of Turbulence Modeling for Analysis of Combustion Instabilities in Rocket Motor (로켓엔진의 연소 불안정 해석을 위한 난류 모델링의 수치적 연구)

  • 임석규;노태성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.75-84
    • /
    • 2002
  • A numerical analysis of unsteady motion in solid rocket motors with a nozzle has been conducted. The numerical formulation including modified $\kappa$-$\varepsilon$ turbulence model treats the complete conservation equation for the gas phase and the one-dimensional equations in the radial direction for the condensed phase. A fully coupled implicit scheme based on a dual time-stepping integration algorithm has been adopted to solve the governing equations. After obtaining a steady state solution, pulse and periodic oscillations of pressure are imposed at the head-end to simulate acoustic oscillations of a travelling-wave motion in the combustion chamber. Various steady and unsteady state features in the combustion chamber of a rocket motor has been analyzed as results of numerical calculations.

The Analysis of Stability in a Steam Generator (증기발생기의 안정성 분석)

  • Shin Whan Kim;Goon Cherl Park
    • Nuclear Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.279-289
    • /
    • 1985
  • The purpose of this paper is to investigate the density-wave oscillation type instability in the recirculating loop of U-tube steam generator (UTSG). The perturbed and nodalized conservations equations based on the drift-flux model have been derived to obtain the single-and two-phase pressure drop perturbations, by taking into account the slip between phases, nonuniform heat flux and heated wall dynamics. To assess the stability, the frequency domain technique with the Nyquist criterion has been used under the constant pressure drop boundary condition through the loop. The computer implementation of this model, SASG, was used for the parametric study of the steam generator in Kori-Unit 1. The results of the parametric study revealed important factors influencing UTSG stability margin.

  • PDF

A Review on factors that influence Electrogastrography (위전도(胃電圖)에 영향을 미치는 요인(要因)에 대한 고찰(考察))

  • Kim, Sun-Hyeok;Park, Young-Bae;Park, Young-Jae;Oh, Hwan-Sup
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.13 no.1
    • /
    • pp.10-18
    • /
    • 2009
  • Objectives : To review to determine difference in the effect of age, gender, location of electrode, test meal and period of recording that influence Electrogastrography (EGG) parameters and to study its oriental medical application. Methods : We investigate the research results through internet search engines, Pub Med, Karger, Mary Ann Libert and Pro Quest. Results : Age and gender influence postprandial Dominant Frequency Instability Coefficient (DFIC). Body mass index (BMI) influence fasting and postprandial EGG parameters. Menstrual cycle phase influence fasting Dominant Frequency (DF). Test meal volume and composition influence postprandial EGG parameters. But reduced-calorie test meal have no effect on EGG parameters. Conclusions : Because the amplitude of surface-recorded SW(slow wave) is very weak, EGG is influenced by many factors. Age, gender, BMI, menstrual cycle phase, test meal volume and test meal composition influence EGG parameters. but reduced-calorie test meal have no effect on EGG parameters.

  • PDF

Effects of Microwave Induction on the Liftoff and NOx Emission in Methane Micro Jet Flames (메탄 마이크로 제트화염의 부상과 NOx 배출에 대한 마이크로파 효과)

  • Jeon, Young Hoon;Lee, Eui Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.22-28
    • /
    • 2016
  • High efficient and environment friendly combustion technologies are used to be operated an extreme condition, which results in unintended flame instability such as extinction and oscillation. The use of electromagnetic energy is one of methods to enhance the combustion stability and a microwave as electromagnetic wave is receiving increased attention recently because of its high performance and low-cost system. In this study, an experiment was performed with jet diffusion flames induced by microwave. Micro jet was introduced to simulate the high velocity of industrial combustor. The results show that micro jet flames had three different modes with increasing oxidizer velocity; attached yellow flame, lifted flame, and lifted partially premixed flame. As a microwave was induced to flames, the overall flame stability and blowout limit were extended with the higher microwave power. Especially the interaction between a flame and a microwave was shown clearly in the partially premixed flame, in which the lift-off height decreased and NOx emission measured in post flame region increased with increasing microwave power. It might be attributed to increase of reactivity due to the abundance of radical pool and the enhanced absorption to thermal energy.

Experimental Study on Flame Structure and Temperature Characteristics in a Lean Premixed Model Gas Turbine Combustor

  • Lee Jong Ho;Jeon Chung Hwan;Chang Young June;Park Chul Woong;Hahn Jae Won
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1366-1377
    • /
    • 2005
  • Experimental study was carried out in an atmospheric pressure, laboratory-scale dump combustor showing features of combustion instabilities. Flame structure and heat release rates were obtained from OH emission spectroscopy. Qualitative comparisons were made between line-integrated OH chemiluminescence image and Abel-transformed one. Local Rayleigh index distributions were also examined. Mean temperature, normalized standard deviation and temperature fluctuations were measured by coherent anti-Stokes Raman spectroscopy (CARS). To see the periodic behavior of oscillating flames, phase-resolved measurements were performed with respect to the pressure wave in the combustor. Results on system damping and driving characteristics were provided as a function of equivalence ratio. It also could be observed that phase resolved temperatures have been changed in a well-defined manner, while its difference between maximum and minimum reached up to 280K. These results would be expected to play an important role in better understanding of driving mechanisms and thermo-acoustic interactions.

Damping Characteristic of Resonator according to Geometry Variation (음향공 형상 변화에 따른 감쇠 특성 변화)

  • Kim, Jai-Ho;Park, Jin-Ho;Yu, I-Sang;Jang, Ji-Hun;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.35-38
    • /
    • 2011
  • Damping characteristic according to acoustic cavity's geometries was investigated to control the high frequency combustion instability occurring in the Liquid Rocket Combustion Chamber by experimental test and linear analysis. Its diameter was determined as a design parameter and its orifice length and diameter were appointed as fixed parameter in this study. Result shows that the damping capacity has been almost constant through all the experiments despite using the same orifice and helmholtz resonators which have different volume.

  • PDF

Electron Pre-acceleration in Weak Quasi-perpendicular Shocks in Clusters of Galaxies

  • Ha, Ji-Hoon;Kang, Hyesung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.49.1-49.1
    • /
    • 2019
  • Giant radio relics in the outskirts of galaxy clusters have been observed and they are interpreted as synchrotron emission from relativistic electrons accelerated via diffusive shock acceleration (DSA) in weak shocks of Ms < 3.0. In the DSA theory, the particle momentum should be greater than a few times the momentum of thermal protons to cross the shock transition and participate in the Fermi acceleration process. In the equilibrium, the momentum of thermal electrons is much smaller than the momentum of thermal protons, so electrons need to be pre-accelerated before they can go through DSA. To investigate such electron injection process, we study the electron pre-acceleration in weak quasi-perpendicular shocks (Ms = 2.0 - 3.0) in an ICM plasma (kT = 8.6 keV, beta = 100) through 2D particle-in-cell simulations. It is known that in quasi-perpendicular shocks, a substantial fraction of electrons could be reflected upstream, gain energy via shock drift acceleration (SDA), and generate oblique waves via the electron firehose instability (EFI), leading the energization of electrons through wave-particle interactions. We find that such kinetic processes are effective only in supercritical shocks above a critical Mach number, $Ms{\ast}{\sim}2.3$. In addition, even in shocks with Ms > 2.3, energized electrons may not reach high energies to be injected to DSA, because the oblique EFI alone fails to generate long-wavelength waves. Our results should have implications for the origin and nature of radio relics.

  • PDF

Experiments on the stability of the spatial autocorrelation method (SPAC) and linear array methods and on the imaginary part of the SPAC coefficients as an indicator of data quality (공간자기상관법 (SPAC)의 안정성과 선형 배열법과 자료 품질 지시자로 활용되는 SPAC 계수의 허수 성분에 대한 실험)

  • Margaryan, Sos;Yokoi, Toshiaki;Hayashi, Koichi
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.121-131
    • /
    • 2009
  • In recent years, microtremor array observations have been used for estimation of shear-wave velocity structures. One of the methods is the conventional spatial autocorrelation (SPAC) method, which requires simultaneous recording at least with three or four sensors. Modified SPAC methods such as 2sSPAC, and linear array methods, allow estimating shear-wave structures by using only two sensors, but suffer from instability of the spatial autocorrelation coefficient for frequency ranges higher than 1.0 Hz. Based on microtremor measurements from four different size triangular arrays and four same-size triangular and linear arrays, we have demonstrated the stability of SPAC coefficient for the frequency range from 2 to 4 or 5 Hz. The phase velocities, obtained by fitting the SPAC coefficients to the Bessel function, are also consistent up to the frequency 5 Hz. All data were processed by the SPAC method, with the exception of the spatial averaging for the linear array cases. The arrays were deployed sequentially at different times, near a site having existing Parallel Seismic (PS) borehole logging data. We also used the imaginary part of the SPAC coefficients as a data-quality indicator. Based on perturbations of the autocorrelation spectrum (and in some cases on visual examination of the record waveforms) we divided data into so-called 'reliable' and 'unreliable' categories. We then calculated the imaginary part of the SPAC spectrum for 'reliable', 'unreliable', and complete (i.e. 'reliable' and 'unreliable' datasets combined) datasets for each array, and compared the results. In the case of insufficient azimuthal distribution of the stations (the linear array) the imaginary curve shows some instability and can therefore be regarded as an indicator of insufficient spatial averaging. However, in the case of low coherency of the wavefield the imaginary curve does not show any significant instability.

A Study on Mitigation of Psychological Instability of Soldiers by Direct Exposure to the SMR Wave (감각운동 리듬(SMR파)파 직접노출에 의한 심리적 불안상태 해소에 관한 연구)

  • Kim, Kyoung-Lae;Kim, Koo-Bum;Cho, Seok-Su;Park, Jung Soon;Kim, Hyung Jun;Yeo, Sun Gu;Min, Byeong Chan
    • Science of Emotion and Sensibility
    • /
    • v.22 no.3
    • /
    • pp.103-108
    • /
    • 2019
  • Although the Korean Armistice Agreement resulted in complete cessation of the hostilities of the Korean War, it also initiated a rule that obligates Korean men to compulsorily participate in military service. However, psychological factors such as anxiety, stress, and negative perception among the young participants joining the military lead to inefficiency in training and performance. Several types of media production companies have been tasked to deal with this problem. However, their tools have not adequately addressed the root causes of the psychological distress. Stress rates are still high among the youth. This paper offers a method of reducing anxiety and psychological stress among those joining the military. It also aims to help improve concentration and cope with the pessimism of military life. The study measured the increase in concentration as well as the changing rate of anxiety and psychological stress in the participants of two experimental groups. A significant result with t = 2.487, p = 0.042, and 95% confidence levels was revealed by analyzing the data pertaining to the experimental group that was directly exposed to the sensorimotor rhythm (SMR) wave implying that this brain wave alleviated feelings of anxiety and psychological stress. The method proposed in this paper can thus be applied to mitigate stress in soldiers and help them with their personal and military lives. Further interdisciplinary experiments examining the associations between the electrocardiogram and electroencephalogram are required.